scispace - formally typeset
Open AccessJournal ArticleDOI

Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics.

TLDR
N nanoscale phase stabilization of CsPbI3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices and describe the formation of α-CsP bI3 QD films that are phase-stable for months in ambient air.
Abstract
We show nanoscale phase stabilization of CsPbI 3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI 3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI 3 (α-CsPbI 3 )—the variant with desirable band gap—is only stable at high temperatures. We describe the formation of α-CsPbI 3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuit voltage of 1.23 volts and efficiency of 10.77%. These devices also function as light-emitting diodes with low turn-on voltage and tunable emission.

read more

Citations
More filters
Journal ArticleDOI

Halide Perovskite Photovoltaics: Background, Status, and Future Prospects

TL;DR: The fundamentals, recent research progress, present status, and views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices are described.
Journal ArticleDOI

Properties and potential optoelectronic applications of lead halide perovskite nanocrystals

TL;DR: The prospects of LHP NCs for optoelectronic applications such as in television displays, light-emitting devices, and solar cells are surveyed, emphasizing the practical hurdles that remain to be overcome.
Journal ArticleDOI

Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals

TL;DR: Lead-halide perovskites have entered the family of colloidal nanocrystals, showing excellent optical properties and easy synthesizability, and insight is provided into their chemical versatility, stability challenges and use in optoelectronics.
Journal ArticleDOI

High-Efficiency Perovskite Solar Cells.

TL;DR: This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovSKite solar cells, and possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Semiconductor Clusters, Nanocrystals, and Quantum Dots

TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Journal ArticleDOI

Hard and soft acids and bases

TL;DR: In this paper, the rate data for the generalized nucleophilic displacement reaction were reviewed, and the authors presented a method to estimate the rate of the generalized displacement reaction in terms of the number of nucleophiles.
Journal ArticleDOI

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut

TL;DR: The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Journal ArticleDOI

Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping

TL;DR: The results suggest that the doping-induced structural and size transition, demonstrated here in NaYF4 upconversion nanocrystals, could be extended to other lanthanide-doped nanocrystal systems for applications ranging from luminescent biological labels to volumetric three-dimensional displays.
Related Papers (5)