scispace - formally typeset
Open AccessJournal ArticleDOI

Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses.

TLDR
Growing evidence suggests a model for redox homeostasis in which the reactive oxygen species (ROS)–antioxidant interaction acts as a metabolic interface for signals derived from metabolism and from the environment.
Abstract
Low molecular weight antioxidants, such as ascorbate, glutathione, and tocopherol, are information-rich redox buffers that interact with numerous cellular components. In addition to crucial roles in defense and as enzyme cofactors, cellular antioxidants influence plant growth and development by modulating processes from mitosis and cell elongation to senescence and death (De Pinto and De Gara, 2004; Potters et al., 2004; Tokunaga et al., 2005). Most importantly, antioxidants provide essential information on cellular redox state, and they influence gene expression associated with biotic and abiotic stress responses to maximize defense. Growing evidence suggests a model for redox homeostasis in which the reactive oxygen species (ROS)–antioxidant interaction acts as a metabolic interface for signals derived from metabolism and from the environment. This interface modulates the appropriate induction of acclimation processes or, alternatively, execution of cell death programs.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants

TL;DR: The biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery are described, which protects plants against oxidative stress damages.
Journal ArticleDOI

Reactive oxygen species homeostasis and signalling during drought and salinity stresses

TL;DR: An overview of ROS homeostasis and signalling in response to drought and salt stresses is provided and the current understanding of ROS involvement in stress sensing, stress signalling and regulation of acclimation responses is discussed.
Journal ArticleDOI

Salicylic Acid, a multifaceted hormone to combat disease.

TL;DR: Genetic studies reveal an increasingly complex network of proteins required for SA-mediated defense signaling, and this process is amplified by several regulatory feedback loops.
Journal ArticleDOI

Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants

TL;DR: This review focuses on the different types of ROS, their cellular production sites, their targets, and their scavenging mechanism mediated by both the branches of the antioxidant systems, highlighting the potential role of antioxidant in plants.
Journal ArticleDOI

Ascorbate and glutathione: the heart of the redox hub.

TL;DR: The discovery that there is a close relationship between ascorbate and glutathione dates from soon after the characterization of the chemical formulae of the two molecules.
References
More filters
Journal ArticleDOI

Free Radicals in the Physiological Control of Cell Function

Wulf Dröge
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Journal ArticleDOI

Plant pathogens and integrated defence responses to infection.

TL;DR: The current knowledge of recognition-dependent disease resistance in plants is reviewed, and a few crucial concepts are included to compare and contrast plant innate immunity with that more commonly associated with animals.
Journal ArticleDOI

Reactive oxygen species produced by nadph oxidase regulate plant cell growth

TL;DR: It is shown here that RHD2 is an NADPH oxidase, a protein that transfers electrons from NADPH to an electron acceptor leading to the formation of reactive oxygen species (ROS) and that ROS accumulate in growing wild-type (WT) root hairs but their levels are markedly decreased in rhd2 mutants.
Book ChapterDOI

Flavonoids as antioxidants: determination of radical-scavenging efficiencies.

TL;DR: The radical chemistry of flavonoids not only is of interest from a kinetic or mechanistic point of view but also offers considerable insight into structural relationships of highly evolved plant components.
Journal Article

Reactive oxygen species

Related Papers (5)