scispace - formally typeset
Open AccessJournal ArticleDOI

Resonant Cyclotron Scattering in Magnetars’ Emission

Reads0
Chats0
TLDR
In this paper, the authors presented a systematic fit of a model of resonant cyclotron scattering (RCS) to the X-ray data of 10 magnetars, including canonical and transient anomalous Xray pulsars (AXPs) and soft gamma repeaters (SGRs).
Abstract
We present a systematic fit of a model of resonant cyclotron scattering (RCS) to the X-ray data of 10 magnetars, including canonical and transient anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs). In this scenario, nonthermal magnetar spectra in the soft X-rays (i.e., below ~10 keV) result from resonant cyclotron scattering of the thermal surface emission by hot magnetospheric plasma. We find that this model can successfully account for the soft X-ray emission of magnetars, while using the same number of free parameters as in the commonly used empirical blackbody plus power-law model. However, while the RCS model can alone reproduce the soft X-ray spectra of AXPs, the much harder spectra of SGRs below 10 keV require the addition of a power-law component (the latter being the same component responsible for their hard X-ray emission). Although this model in its present form does not explain the hard X-ray emission (i.e., above ~20 keV) of a few of these sources, we took this further component into account in our modeling not to overlook its contribution in the ~4-10 keV band. We find that the entire class of sources is characterized by magnetospheric plasma with a density which, at resonant radius, is about 3 orders of magnitude higher than the Goldreich-Julian electron density. The inferred values of the intervening hydrogen column densities are also in better agreement with more recent estimates. Although the treatment of the magnetospheric scattering used here is only approximated, its successful application to all magnetars shows that the RCS model is capable of catching the main features of the spectra observed below ~10 keV.

read more

Citations
More filters
Journal ArticleDOI

Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models.

TL;DR: In this article, the authors present the results of 2D simulations of the fully-coupled evolution of temperature and magnetic field in neutron stars, including the state-of-the-art kinetic coefficients and, for the first time, the important effect of the Hall term.
Journal ArticleDOI

Magnetars: the physics behind observations. A review.

TL;DR: A comprehensive overview of magnetar research, in which the observational results are discussed in the light of the most up-to-date theoretical models and their implications address the more fundamental issue of how physics in strong magnetic fields can be constrained by the observations of these unique sources.
Journal ArticleDOI

Magnetars: the physics behind observations

TL;DR: A comprehensive overview of magnetar observations can be found in this article, where the most up-to-date theoretical models and their implications are discussed in the light of the observations.
Journal ArticleDOI

Untwisting magnetospheres of neutron stars

TL;DR: In this paper, the authors derived an equation describing the evolution of the magnetosphere of neutron stars and derived its solutions, and its solutions are presented. And they also discussed implications for other magnetars.
Journal ArticleDOI

Magnetars: Properties, Origin and Evolution

TL;DR: In this paper, the observed properties of the persistent emission from magnetars, discuss the main models proposed to explain the origin of their magnetic field and present recent developments in the study of their evolution and connection with other classes of neutron stars.
References
More filters
Journal ArticleDOI

Abundances of the elements: Meteoritic and solar

TL;DR: In this article, new abundance tables have been compiled for C1 chondrites and the solar photosphere and corona, based on a critical review of the literature to mid-1988.
Journal ArticleDOI

Solar System Abundances and Condensation Temperatures of the Elements

TL;DR: In this article, solar photospheric and meteoritic CI chondrite abundance determinations for all elements are summarized and the best currently available photosphere abundances are selected, including the meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron, phosphorous, sulfur).
Book

Compact Stellar X-ray Sources

TL;DR: A decade of X-ray sources and their evolution is described in this paper, with a focus on the formation and evolution of super-soft sources and the formation of compact stellar sources.
Journal ArticleDOI

Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts

TL;DR: In this article, it is argued that a convective dynamo can also generate a very strong dipole field after the merger of a neutron star binary, but only if the merged star survives for as long as about 10-100 ms.
Related Papers (5)