scispace - formally typeset
Search or ask a question

Showing papers in "Reports on Progress in Physics in 2015"


Journal ArticleDOI
TL;DR: The physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies, are reviewed and the hydrodynamic aspects of swimming are addressed.
Abstract: Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.

1,220 citations


Journal ArticleDOI
TL;DR: This review looks at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots.
Abstract: In this review we look at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots. We explore the phenomenon of strong coupling with reference to a number of examples involving electromagnetic fields and matter. We then provide a concise description of the relevant background physics of surface plasmon polaritons. An extensive overview of the historical background and a detailed discussion of more recent relevant experimental advances concerning strong coupling between surface plasmon polaritons and quantum emitters is then presented. Three conceptual frameworks are then discussed and compared in depth: classical, semi-classical and fully quantum mechanical; these theoretical frameworks will have relevance to strong coupling beyond that involving surface plasmon polaritons. We conclude our review with a perspective on the future of this rapidly emerging field, one we are sure will grow to encompass more intriguing physics and will develop in scope to be of relevance to other areas of science.

1,190 citations


Journal ArticleDOI
TL;DR: A density functional theory that accounts for van der Waals interactions in condensed matter, materials physics, chemistry, and biology is reviewed and the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.
Abstract: A density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology is reviewed. The insights that led to the construction of the Rutgers–Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

582 citations


Journal ArticleDOI
Hui Zhai1
TL;DR: It is shown that investigating SO coupling in cold atom systems can enrich the understanding of basic phenomena such as superfluidity, provide a good platform for simulating condensed matter states such as topological superfluids and result in novel quantum systems such as SO coupled unitary Fermi gas and high spin quantum gases.
Abstract: This review focuses on recent developments in synthetic spin-orbit (SO) coupling in ultracold atomic gases. Two types of SO coupling are discussed. One is Raman process induced coupling between spin and motion along one of the spatial directions and the other is Rashba SO coupling. We emphasize their common features in both single-particle and two-body physics and the consequences of both in many-body physics. For instance, single particle ground state degeneracy leads to novel features of superfluidity and a richer phase diagram; increased low-energy density-of-state enhances interaction effects; the absence of Galilean invariance and spin-momentum locking gives rise to intriguing behaviours of superfluid critical velocity and novel quantum dynamics; and the mixing of two-body singlet and triplet states yields a novel fermion pairing structure and topological superfluids. With these examples, we show that investigating SO coupling in cold atom systems can, enrich our understanding of basic phenomena such as superfluidity, provide a good platform for simulating condensed matter states such as topological superfluids and more importantly, result in novel quantum systems such as SO coupled unitary Fermi gas and high spin quantum gases. Finally we also point out major challenges and some possible future directions.

544 citations


Journal ArticleDOI
TL;DR: An outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations are discussed.
Abstract: Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

496 citations


Journal ArticleDOI
TL;DR: The foundations of SPT are described together with novel optical implementations that nowadays allow the investigation of single molecule dynamic events with increasingly high spatiotemporal resolution using molecular densities closer to physiological expression levels.
Abstract: Optical microscopy has for centuries been a key tool to study living cells with minimum invasiveness The advent of single molecule techniques over the past two decades has revolutionized the field of cell biology by providing a more quantitative picture of the complex and highly dynamic organization of living systems Amongst these techniques, single particle tracking (SPT) has emerged as a powerful approach to study a variety of dynamic processes in life sciences SPT provides access to single molecule behavior in the natural context of living cells, thereby allowing a complete statistical characterization of the system under study In this review we describe the foundations of SPT together with novel optical implementations that nowadays allow the investigation of single molecule dynamic events with increasingly high spatiotemporal resolution using molecular densities closer to physiological expression levels We outline some of the algorithms for the faithful reconstruction of SPT trajectories as well as data analysis, and highlight biological examples where the technique has provided novel insights into the role of diffusion regulating cellular function The last part of the review concentrates on different theoretical models that describe anomalous transport behavior and ergodicity breaking observed from SPT studies in living cells

426 citations


Journal ArticleDOI
TL;DR: Over the past few years, the scientific community, as well as the world's coatings industry has seen the introduction of oxide/polymer-based superhydrophobic surfaces and coatings with exceptional water repellency.
Abstract: Over the past few years, the scientific community, as well as the world's coatings industry has seen the introduction of oxide/polymer-based superhydrophobic surfaces and coatings with exceptional water repellency. Online videos have caught the public's imagination by showing people walking through mud puddles without getting their tennis shoes wet or muddy, and water literally flying off coated surfaces. This article attempts to explain the basics of this behavior and to discuss and explain the latest superhydrophobic technological breakthroughs. Since superhydrophobic surfaces and coatings can fundamentally change how water interacts with surfaces, and the fact that earth is a water world, it can legitimately be said that this technology has the potential to literally change the world.

414 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the controlled creation of long-range equal-spin triplet supercurrents in ferromagnets and their contribution to spintronics, which is a fruitful basis for the study of fundamental physics as they combine macroscopic quantum coherence with microscopic exchange interactions.
Abstract: During the past 15 years a new field has emerged, which combines superconductivity and spintronics, with the goal to pave a way for new types of devices for applications combining the virtues of both by offering the possibility of long-range spin-polarized supercurrents. Such supercurrents constitute a fruitful basis for the study of fundamental physics as they combine macroscopic quantum coherence with microscopic exchange interactions, spin selectivity, and spin transport. This report follows recent developments in the controlled creation of long-range equal-spin triplet supercurrents in ferromagnets and its contribution to spintronics. The mutual proximity-induced modification of order in superconductor-ferromagnet hybrid structures introduces in a natural way such evasive phenomena as triplet superconductivity, odd-frequency pairing, Fulde-Ferrell-Larkin-Ovchinnikov pairing, long-range equal-spin supercurrents, [Formula: see text]-Josephson junctions, as well as long-range magnetic proximity effects. All these effects were rather exotic before 2000, when improvements in nanofabrication and materials control allowed for a new quality of hybrid structures. Guided by pioneering theoretical studies, experimental progress evolved rapidly, and since 2010 triplet supercurrents are routinely produced and observed. We have entered a new stage of studying new phases of matter previously out of our reach, and of merging the hitherto disparate fields of superconductivity and spintronics to a new research direction: super-spintronics.

408 citations


Journal ArticleDOI
TL;DR: A comprehensive overview of magnetar research, in which the observational results are discussed in the light of the most up-to-date theoretical models and their implications address the more fundamental issue of how physics in strong magnetic fields can be constrained by the observations of these unique sources.
Abstract: Magnetars are the strongest magnets in the present universe and the combination of extreme magnetic field, gravity and density makes them unique laboratories to probe current physical theories (from quantum electrodynamics to general relativity) in the strong field limit. Magnetars are observed as peculiar, burst-active x-ray pulsars, the anomalous x-ray pulsars (AXPs) and the soft gamma repeaters (SGRs); the latter emitted also three 'giant flares', extremely powerful events during which luminosities can reach up to 10(47) erg s(-1) for about one second. The last five years have witnessed an explosion in magnetar research which has led, among other things, to the discovery of transient, or 'outbursting', and 'low-field' magnetars. Substantial progress has been made also on the theoretical side. Quite detailed models for explaining the magnetars' persistent x-ray emission, the properties of the bursts, the flux evolution in transient sources have been developed and confronted with observations. New insight on neutron star asteroseismology has been gained through improved models of magnetar oscillations. The long-debated issue of magnetic field decay in neutron stars has been addressed, and its importance recognized in relation to the evolution of magnetars and to the links among magnetars and other families of isolated neutron stars. The aim of this paper is to present a comprehensive overview in which the observational results are discussed in the light of the most up-to-date theoretical models and their implications. This addresses not only the particular case of magnetar sources, but the more fundamental issue of how physics in strong magnetic fields can be constrained by the observations of these unique sources.

390 citations


Journal ArticleDOI
TL;DR: The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian, and the effects related to higher Bloch bands also become important even for deep optical lattices.
Abstract: Originally, the Hubbard model was derived for describing the behavior of strongly correlated electrons in solids. However, for over a decade now, variations of it have also routinely been implemented with ultracold atoms in optical lattices, allowing their study in a clean, essentially defect-free environment. Here, we review some of the vast literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After giving an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so-called extended Bose–Hubbard models, that include interactions between neighboring sites, next-neighbor sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, the effects related to higher Bloch bands also become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis, Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher p orbitals, as well as models that dynamically couple spin and orbital degrees of freedom. Finally, we review mean-field nonlinear Schrodinger models of the Salerno type that share with the non-standard Hubbard models nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of consideration. We conclude by listing some open problems, to be addressed in the future.

332 citations


Journal ArticleDOI
TL;DR: Using the new nanotechnologies to carve subwavelength features within the large diffracting apertures of conventional holograms, it is now possible to create binary holographic interfaces to shape both amplitude phase and polarization of light.
Abstract: In this article, we review recent developments in the field of surface electromagnetic wave holography. The holography principle is used as a tool to solve an inverse engineering problem consisting of designing novel plasmonic interfaces to excite either surface waves or free-space beams with any desirable field distributions. Leveraging on the new nanotechnologies to carve subwavelength features within the large diffracting apertures of conventional holograms, it is now possible to create binary holographic interfaces to shape both amplitude phase and polarization of light. The ability of the new generation of ultrathin and compact holographic optical devices to fully address light properties could find widespread applications in photonics.

Journal ArticleDOI
TL;DR: The radioactive properties of the new nuclei, the isotopes of elements 112-118 as well as of their decay products, give evidence of the significant increase of the stability of the heavy nuclei with rise of their neutron number and approaching magic number N = 184.
Abstract: A review of the discovery and investigation of the ?island of stability? of super-heavy nuclei at the separator DGFRS (FLNR, JINR) in the fusion reactions of 48Ca projectiles with target nuclei 238U-249Cf is presented. The synthesis of the heaviest nuclei, their decay properties, and methods of identification are discussed. The role of shell effects in the stability of super-heavy nuclei is demonstrated by comparison of the experimental data and results of theoretical calculations. The radioactive properties of the new nuclei, the isotopes of elements 112?118 as well as of their decay products, give evidence of the significant increase of the stability of the heavy nuclei with rise of their neutron number and approaching magic number N = 184.

Journal ArticleDOI
TL;DR: The contribution of cell separation to biomedical research and medicine is highlighted and modern cell-separation methods are detailed, with a strong focus on the fundamental governing physical phenomena, properties and syntheses of magnetic particles.
Abstract: Magnetic sorting using magnetic beads has become a routine methodology for the separation of key cell populations from biological suspensions. Due to the inherent ability of magnets to provide forces at a distance, magnetic cell manipulation is now a standardized process step in numerous processes in tissue engineering, medicine, and in fundamental biological research. Herein we review the current status of magnetic particles to enable isolation and separation of cells, with a strong focus on the fundamental governing physical phenomena, properties and syntheses of magnetic particles and on current applications of magnet-based cell separation in laboratory and clinical settings. We highlight the contribution of cell separation to biomedical research and medicine and detail modern cell-separation methods (both magnetic and non-magnetic). In addition to a review of the current state-of-the-art in magnet-based cell sorting, we discuss current challenges and available opportunities for further research, development and commercialization of magnetic particle-based cell-separation systems.

Journal ArticleDOI
TL;DR: In this article, a pedagogical review of the properties of frames with z at or near zc is presented, which model systems like randomly packed spheres near jamming and network glasses, and the relation between states of self stress and zero modes in periodic lattices to the surface zero modes of finite free lattices with free boundary conditions.
Abstract: Much of our understanding of vibrational excitations and elasticity is based upon analysis of frames consisting of sites connected by bonds occupied by central-force springs, the stability of which depends on the average number of neighbors per site z. When z < zc ≈ 2d, where d is the spatial dimension, frames are unstable with respect to internal deformations. This pedagogical review focuses on the properties of frames with z at or near zc, which model systems like randomly packed spheres near jamming and network glasses. Using an index theorem, N0 -NS = dN -NB relating the number of sites, N, and number of bonds, NB, to the number, N0, of modes of zero energy and the number, NS, of states of self stress, in which springs can be under positive or negative tension while forces on sites remain zero, it explores the properties of periodic square, kagome, and related lattices for which z = zc and the relation between states of self stress and zero modes in periodic lattices to the surface zero modes of finite free lattices (with free boundary conditions). It shows how modifications to the periodic kagome lattice can eliminate all but trivial translational zero modes and create topologically distinct classes, analogous to those of topological insulators, with protected zero modes at free boundaries and at interfaces between different topological classes.

Journal ArticleDOI
TL;DR: An overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise is presented, and how it evolves due to the unavoidable interaction of the entangled system with its surroundings is surveyed.
Abstract: One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information.

Journal ArticleDOI
J. A. Mydosh1
TL;DR: The 40+ year old spin-glass field and one of its earliest model interpretations as a spin density wave are reviewed, with emphasis on new spin glass materials and their relation to topical problems and strongly correlated materials in condensed matter physics.
Abstract: This article reviews the 40+ year old spin-glass field and one of its earliest model interpretations as a spin density wave. Our description is from an experimental phenomenological point of view with emphasis on new spin glass materials and their relation to topical problems and strongly correlated materials in condensed matter physics. We first simply define a spin glass (SG), give its basic ingredients and explain how the spin glasses enter into the statistical mechanics of classical phase transitions. We then consider the four basic experimental properties to solidly characterize canonical spin glass behavior and introduce the early theories and models. Here the spin density wave (SDW) concept is used to explain the difference between a short-range SDW, i.e. a SG and, in contrast, a long-range SDW, i.e. a conventional magnetic phase transition. We continue with the present state of SG, its massive computer simulations and recent proposals of chiral glasses and quantum SG. We then collect and mention the various SG 'spin-off's'. A major section uncovers the fashionable unconventional materials that display SG-like freezing and glassy ground states, such as (high temperature) superconductors, heavy fermions, intermetallics and Heuslers, pyrochlor and spinels, oxides and chalogenides and exotics, e.g. quasicrystals. Some conclusions and future directions complete the review.

Journal ArticleDOI
TL;DR: In this paper, the authors review ground states and excitations of a quantum antiferromagnet on triangular and other frustrated lattices, and pay special attention to the combined effects of magnetic field h, spatial anisotropy R and spin magnitude S.
Abstract: We review ground states and excitations of a quantum antiferromagnet on triangular and other frustrated lattices. We pay special attention to the combined effects of magnetic field h, spatial anisotropy R and spin magnitude S. The focus of the review is on the novel collinear spin density wave and spin nematic states, which are characterized by fully gapped transverse spin excitations with Sz = ± 1. We discuss extensively the R − h phase diagram of the antiferromagnet, both in the large-S semiclassical limit and the quantum S = 1/2 limit. When possible, we point out connections with experimental findings.

Journal ArticleDOI
TL;DR: The reader is offered a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components.
Abstract: Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the 3D biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gases, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms.

Journal ArticleDOI
TL;DR: A detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, and discusses experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states.
Abstract: This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q + P = 1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In addition to discussing experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states, we also review manifestations of DPTs in mesoscopic devices and other systems. These experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various superradiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics.

Journal ArticleDOI
TL;DR: In this paper, the spin-dependent transport in materials with spin-orbit interaction of Rashba type is described and the problem of spin current generation and interference effects in mesoscopic devices is described in detail.
Abstract: In this review article we describe spin-dependent transport in materials with spin-orbit interaction of Rashba type. We mainly focus on semiconductor heterostructures, however we consider topological insulators, graphene and hybrid structures involving superconductors as well. We start from the Rashba Hamiltonian in a two dimensional electron gas and then describe transport properties of two- and quasi-one-dimensional systems. The problem of spin current generation and interference effects in mesoscopic devices is described in detail. We address also the role of Rashba interaction on localisation effects in lattices with nontrivial topology, as well as on the Ahronov-Casher effect in ring structures. A brief section, in the end, describes also some related topics including the spin-Hall effect, the transition from weak localisation to weak anti localisation and the physics of Majorana fermions in hybrid heterostructures involving Rashba materials in the presence of superconductivity.

Journal ArticleDOI
TL;DR: This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity in a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries requires some adaptations and new developments.
Abstract: In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity. De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting 'microscopic' degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.

Journal ArticleDOI
TL;DR: The mass loss of different sectors is revisited and it is shown that they manifest quite different sensitivities to atmospheric and oceanic forcing and recent progress in constructing coupled ice-ocean-atmosphere models required to project realistic future sea-level changes is discussed.
Abstract: Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance and to ice discharge, which are forced by internal or external (atmospheric/oceanic/basal) fluctuations. Regardless of the measurement method, observations over the last two decades show an increase in ice loss rate, associated with speeding up of glaciers and enhanced melting. However, both ice discharge and melt-induced mass losses exhibit rapid short-term fluctuations that, when extrapolated into the future, could yield erroneous long-term trends. In this paper we review the GrIS mass loss over more than a century by combining satellite altimetry, airborne altimetry, interferometry, aerial photographs and gravimetry data sets together with modelling studies. We revisit the mass loss of different sectors and show that they manifest quite different sensitivities to atmospheric and oceanic forcing. In addition, we discuss recent progress in constructing coupled ice-ocean-atmosphere models required to project realistic future sea-level changes.

Journal ArticleDOI
TL;DR: In this article, the generalized uncertainty principle (GUP) is used to predict minimal length uncertainty with and without maximum momenta, and the origin of minimal measurable quantities and the different GUP approaches are reviewed and corresponding observations are analyzed.
Abstract: Based on string theory, black hole physics, doubly special relativity and some 'thought' experiments, minimal distance and/or maximum momentum are proposed. As alternatives to the generalized uncertainty principle (GUP), the modified dispersion relation, the space noncommutativity, the Lorentz invariance violation, and the quantum-gravity-induced birefringence effects are summarized. The origin of minimal measurable quantities and the different GUP approaches are reviewed and the corresponding observations are analysed. Bounds on the GUP parameter are discussed and implemented in the understanding of recent PLANCK observations of cosmic inflation. The higher-order GUP approaches predict minimal length uncertainty with and without maximum momenta. Possible arguments against the GUP are discussed; for instance, the concern about its compatibility with the equivalence principles, the universality of gravitational redshift and the free fall and law of reciprocal action are addressed.

Journal ArticleDOI
TL;DR: In this paper, the authors review realizations, models and metrology applications of quantized charge pumps based on tunable-barrier quantum dots, and present a review of the corresponding nonadiabatic pumping protocols focusing on understanding of separate parts of the pumping cycle associated with charge loading, capture and release.
Abstract: Precise manipulation of individual charge carriers in nanoelectronic circuits underpins practical applications of their most basic quantum property--the universality and invariance of the elementary charge. A charge pump generates a net current from periodic external modulation of parameters controlling a nanostructure connected to source and drain leads; in the regime of quantized pumping the current varies in steps of [Formula: see text] as function of control parameters, where [Formula: see text] is the electron charge and f is the frequency of modulation. In recent years, robust and accurate quantized charge pumps have been developed based on semiconductor quantum dots with tunable tunnel barriers. These devices allow modulation of charge exchange rates between the dot and the leads over many orders of magnitude and enable trapping of a precise number of electrons far away from equilibrium with the leads. The corresponding non-adiabatic pumping protocols focus on understanding of separate parts of the pumping cycle associated with charge loading, capture and release. In this report we review realizations, models and metrology applications of quantized charge pumps based on tunable-barrier quantum dots.

Journal ArticleDOI
TL;DR: Recent progress on self-similar oscillators both in passive and active fiber, and extensions of self-Similar evolution for surpassing the limits of rare-earth gain media are reviewed.
Abstract: Self-similar fiber oscillators are a relatively new class of mode-locked lasers. In these lasers, the self-similar evolution of a chirped parabolic pulse in normally-dispersive passive, active, or dispersion-decreasing fiber (DDF) is critical. In active (gain) fiber and DDF, the novel role of local nonlinear attraction makes the oscillators fundamentally different from any mode-locked lasers considered previously. In order to reconcile the spectral and temporal expansion of a pulse in the self-similar segment with the self-consistency required by a laser cavity's periodic boundary condition, several techniques have been applied. The result is a diverse range of fiber oscillators which demonstrate the exciting new design possibilities based on the self-similar model. Here, we review recent progress on self-similar oscillators both in passive and active fiber, and extensions of self-similar evolution for surpassing the limits of rare-earth gain media. We discuss some key remaining research questions and important future directions. Self-similar oscillators are capable of exceptional performance among ultrashort pulsed fiber lasers, and may be of key interest in the development of future ultrashort pulsed fiber lasers for medical imaging applications, as well as for low-noise fiber-based frequency combs. Their uniqueness among mode-locked lasers motivates study into their properties and behaviors and raises questions about how to understand mode-locked lasers more generally.

Journal ArticleDOI
TL;DR: This review highlights an often-overlooked aspect of CNT and graphene formation-that the two processes, although seldom discussed in the same terms, are in fact remarkably similar.
Abstract: The discovery of carbon nanotubes (CNTs) and graphene over the last two decades has heralded a new era in physics, chemistry and nanotechnology. During this time, intense efforts have been made towards understanding the atomic-scale mechanisms by which these remarkable nanostructures grow. Molecular simulations have made significant contributions in this regard; indeed, they are responsible for many of the key discoveries and advancements towards this goal. Here we review molecular simulations of CNT and graphene growth, and in doing so we highlight the many invaluable insights gained from molecular simulations into these complex nanoscale self-assembly processes. This review highlights an often-overlooked aspect of CNT and graphene formation?that the two processes, although seldom discussed in the same terms, are in fact remarkably similar. Both can be viewed as a 0D???1D???2D transformation, which converts carbon atoms (0D) to polyyne chains (1D) to a complete sp2-carbon network (2D). The difference in the final structure (CNT or graphene) is determined only by the curvature of the catalyst and the strength of the carbon?metal interaction. We conclude our review by summarizing the present shortcomings of CNT/graphene growth simulations, and future challenges to this important area.

Journal ArticleDOI
TL;DR: A detailed comparison of the PMC and PMS procedures is presented by analyzing two physical observables R(e+e-) and [Formula: see text] up to four-loop order in pQCD.
Abstract: A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme--this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the 'principle of maximum conformality' (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the 'principle of minimum sensitivity' (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R(e+e-) and [Formula: see text] up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on the choice of initial scale is highly suppressed even for low-order predictions. Thus the PMC, based on the standard RGI, has a rigorous foundation; it eliminates an unnecessary systematic error for high precision pQCD predictions and can be widely applied to virtually all high-energy hadronic processes, including multi-scale problems.

Journal ArticleDOI
TL;DR: In this paper, the spin Hall angle and spin diffusion length for a variety of materials including pure metals such as Pt and Ta, alloys and oxides determined by the spin absorption method in a lateral spin valve structure were discussed.
Abstract: Spin Hall effect and its inverse provide essential means to convert charge to spin currents and vice versa, which serve as a primary function for spintronic phenomena such as the spin-torque ferromagnetic resonance and the spin Seebeck effect. These effects can oscillate magnetization or detect a thermally generated spin splitting in the chemical potential. Importantly this conversion process occurs via the spin-orbit interaction, and requires neither magnetic materials nor external magnetic fields. However, the spin Hall angle, i.e. the conversion yield between the charge and spin currents, depends severely on the experimental methods. Here we discuss the spin Hall angle and the spin diffusion length for a variety of materials including pure metals such as Pt and Ta, alloys and oxides determined by the spin absorption method in a lateral spin valve structure.

Journal ArticleDOI
TL;DR: A set of concepts underlying cell-state organization-exploration evolving by global, non-specific, dynamics of gene activity-is presented here, which have significant consequences for the understanding of the emergence and stabilization of a cell phenotype in diverse biological contexts.
Abstract: Biological cells present a paradox, in that they show simultaneous stability and flexibility, allowing them to adapt to new environments and to evolve over time. The emergence of stable cell states depends on genotype-to-phenotype associations, which essentially reflect the organization of gene regulatory modes. The view taken here is that cell-state organization is a dynamical process in which the molecular disorder manifests itself in a macroscopic order. The genome does not determine the ordered cell state; rather, it participates in this process by providing a set of constraints on the spectrum of regulatory modes, analogous to boundary conditions in physical dynamical systems. We have developed an experimental framework, in which cell populations are exposed to unforeseen challenges; novel perturbations they had not encountered before along their evolutionary history. This approach allows an unbiased view of cell dynamics, uncovering the potential of cells to evolve and develop adapted stable states. In the last decade, our experiments have revealed a coherent set of observations within this framework, painting a picture of the living cell that in many ways is not aligned with the conventional one. Of particular importance here, is our finding that adaptation of cell-state organization is essentially an efficient exploratory dynamical process rather than one founded on random mutations. Based on our framework, a set of concepts underlying cell-state organization—exploration evolving by global, non-specific, dynamics of gene activity—is presented here. These concepts have significant consequences for our understanding of the emergence and stabilization of a cell phenotype in diverse biological contexts. Their implications are discussed for three major areas of biological inquiry: evolution, cell differentiation and cancer. There is currently no unified theoretical framework encompassing the emergence of order, a stable state, in the living cell. Hopefully, the integrated picture described here will provide a modest contribution towards a physics theory of the cell.

Journal ArticleDOI
TL;DR: Thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated, and glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects.
Abstract: Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge–Sb–Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.