scispace - formally typeset
Journal ArticleDOI

Role of Secondary Metabolites and Brassinosteroids in Plant Defense Against Environmental Stresses

TLDR
The present review focuses on current understanding of how plants respond to the generation of excessive ROS and the role of secondary metabolites and brassinosteroids in countering the adverse effects of environmental stresses.
Abstract
Being sessile, plants are subjected to a diverse array of environmental stresses during their life span. Exposure of plants to environmental stresses results in the generation of reactive oxygen species (ROS). These activated oxygen species tend to oxidize various cellular biomolecules like proteins, nucleic acids, and lipids, a process that challenges the core existence of the cell. To prevent the accumulation of these ROS and to sustain their own survival, plants have developed an intricate antioxidative defence system. The antioxidative defence system comprises various enzymatic and nonenzymatic molecules, produced to counter the adverse effect of environmental stresses. A sizable number of these molecules belong to the category of compounds called secondary metabolites. Secondary metabolites are organic compounds that are not directly involved in the growth and development of plants but perform specialized functions under a given set of conditions. Absence of secondary metabolites results in long-term impairment of the plant’s survivability. Such compounds generally include pigments, phenolics, and so on. Plant phenolic compounds such as flavonoids and lignin precursors have been reported to accumulate in response to various biotic and abiotic stresses and are regarded as crucial defence compounds that can scavenge harmful ROS. Another important category of plant metabolites, called brassinosteroids, exhibit stress regulatory and growth-promoting activity and are classified as phytohormones. Elucidation of the physiological and molecular effects of secondary metabolites and brassinosteroids have catapulted them as highly promising and environment-friendly natural substances, suitable for wider application in plant protection and crop yield promotion. The present review focuses on our current understanding of how plants respond to the generation of excessive ROS and the role of secondary metabolites and brassinosteroids in countering the adverse effects of environmental stresses.

read more

Citations
More filters
Journal ArticleDOI

Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development

TL;DR: An overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs is provided.
Journal ArticleDOI

Phytohormones as targets for improving plant productivity and stress tolerance

TL;DR: The results of experiments that lead to altered levels of phytohormones in transgenic plants to improve plant productivity are summarized and the effects of genetic modifications should be further verified under field conditions and over a longer time scale.
Journal ArticleDOI

Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles.

TL;DR: In this review, pharmacokinetic synergies among constituents in herbal extracts during intestinal absorption were systematically summarized to broaden the general understanding of the pharmaceutical nature of herbal medicines.
Journal ArticleDOI

Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections

TL;DR: It is demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation and coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress.
Journal ArticleDOI

A Putative Lambda Class Glutathione S-Transferase Enhances Plant Survival under Salinity Stress

TL;DR: Two candidate flavonoid interactants (quercetin and kaemferol) of the GmGSTL1 protein from soybean leaf extract are identified which could reduce salinity-induced ROS accumulation in BY-2 cells and leaf chlorosis in A. thaliana.
References
More filters
Journal ArticleDOI

REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction

TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Journal ArticleDOI

Antioxidant properties of phenolic compounds

TL;DR: It is now possible to establish the antioxidant activities of plant-derived flavonoids in the aqueous and lipophilic phases, and to assess the extent to which the total antioxidant potentials of wine and tea can be accounted for by the activities of individual polyphenols.
Journal ArticleDOI

Understanding plant responses to drought — from genes to the whole plant

TL;DR: Attention is drawn to the perception and signalling processes (chemical and hydraulic) of water deficits, which are essential for a holistic understanding of plant resistance to stress, which is needed to improve crop management and breeding techniques.
Journal ArticleDOI

The antioxidants of higher plants

TL;DR: The evidence supports at least a partial antioxidant role in vivo for many classes of plant metabolite, and many other compounds as potential antioxidants can be inferred by their similarity to synthetic antioxidants of related structure.
Journal ArticleDOI

Biosynthesis of flavonoids and effects of stress.

TL;DR: The accumulation of red or purple flavonoids is a hallmark of plant stress and mounting evidence points to diverse physiological functions for these compounds in the stress response.
Related Papers (5)