scispace - formally typeset
Journal ArticleDOI

Role of Secondary Metabolites and Brassinosteroids in Plant Defense Against Environmental Stresses

TLDR
The present review focuses on current understanding of how plants respond to the generation of excessive ROS and the role of secondary metabolites and brassinosteroids in countering the adverse effects of environmental stresses.
Abstract
Being sessile, plants are subjected to a diverse array of environmental stresses during their life span. Exposure of plants to environmental stresses results in the generation of reactive oxygen species (ROS). These activated oxygen species tend to oxidize various cellular biomolecules like proteins, nucleic acids, and lipids, a process that challenges the core existence of the cell. To prevent the accumulation of these ROS and to sustain their own survival, plants have developed an intricate antioxidative defence system. The antioxidative defence system comprises various enzymatic and nonenzymatic molecules, produced to counter the adverse effect of environmental stresses. A sizable number of these molecules belong to the category of compounds called secondary metabolites. Secondary metabolites are organic compounds that are not directly involved in the growth and development of plants but perform specialized functions under a given set of conditions. Absence of secondary metabolites results in long-term impairment of the plant’s survivability. Such compounds generally include pigments, phenolics, and so on. Plant phenolic compounds such as flavonoids and lignin precursors have been reported to accumulate in response to various biotic and abiotic stresses and are regarded as crucial defence compounds that can scavenge harmful ROS. Another important category of plant metabolites, called brassinosteroids, exhibit stress regulatory and growth-promoting activity and are classified as phytohormones. Elucidation of the physiological and molecular effects of secondary metabolites and brassinosteroids have catapulted them as highly promising and environment-friendly natural substances, suitable for wider application in plant protection and crop yield promotion. The present review focuses on our current understanding of how plants respond to the generation of excessive ROS and the role of secondary metabolites and brassinosteroids in countering the adverse effects of environmental stresses.

read more

Citations
More filters
Journal ArticleDOI

MicroRNAs Roles in Plants Secondary Metabolism.

TL;DR: In this paper, a review of potential miRNAs regulating secondary metabolite biosynthesis activities in plants is presented, which will provide an alternative knowledge for functional studies of secondary metabolism.
Journal ArticleDOI

Characterization and Stability of a Formulation Containing Antioxidants-Enriched Castanea sativa Shells Extract

TL;DR: In this article, a chestnut shells extract was used as a source of phytochemicals with pro-healthy effects in skin care products, and a formulation containing C. sativa shells extract obtained by this environmentally friendly technology was successfully developed.
Book ChapterDOI

Vachellia (Acacia) karroo Communities in South Africa: An Overview

TL;DR: V. karroo in South Africa has an extensive distribution range that includes several biomes, and it is very adaptable and has wide habitat tolerance, growing under many differing conditions of soil, climate, and altitude.
Journal ArticleDOI

Protein expression plasticity contributes to heat and drought tolerance of date palm

TL;DR: In this paper, the authors studied the protein expression changes in leaves, volatile organic compound emissions, and photosynthesis in date palm in response to variable growth temperatures and soil water deprivation.
Journal ArticleDOI

Tissue-specific transcriptional biomarkers in medicinal plants: Application of large-scale meta-analysis and computational systems biology.

TL;DR: A meta-analysis on publicly available transcriptome datasets of twelve economically significant medicinal plants to identify differentially expressed genes (DEGs) between shoot and root tissues and to find the key molecular features which may be effective in the biosynthesis of secondary metabolites.
References
More filters
Journal ArticleDOI

REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction

TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Journal ArticleDOI

Antioxidant properties of phenolic compounds

TL;DR: It is now possible to establish the antioxidant activities of plant-derived flavonoids in the aqueous and lipophilic phases, and to assess the extent to which the total antioxidant potentials of wine and tea can be accounted for by the activities of individual polyphenols.
Journal ArticleDOI

Understanding plant responses to drought — from genes to the whole plant

TL;DR: Attention is drawn to the perception and signalling processes (chemical and hydraulic) of water deficits, which are essential for a holistic understanding of plant resistance to stress, which is needed to improve crop management and breeding techniques.
Journal ArticleDOI

The antioxidants of higher plants

TL;DR: The evidence supports at least a partial antioxidant role in vivo for many classes of plant metabolite, and many other compounds as potential antioxidants can be inferred by their similarity to synthetic antioxidants of related structure.
Journal ArticleDOI

Biosynthesis of flavonoids and effects of stress.

TL;DR: The accumulation of red or purple flavonoids is a hallmark of plant stress and mounting evidence points to diverse physiological functions for these compounds in the stress response.
Related Papers (5)