scispace - formally typeset
Open AccessJournal ArticleDOI

Self‐assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials

Honggang Cui, +2 more
- 01 Jan 2010 - 
- Vol. 94, Iss: 1, pp 1-18
Reads0
Chats0
TLDR
The strategies for using molecular self‐assembly as a toolbox to produce peptide amphiphile nanostructures and materials are highlighted and efforts to translate this technology into applications as therapeutics are reviewed.
Abstract
Peptide amphiphiles are a class of molecules that combine the structural features of amphiphilic surfactants with the functions of bioactive peptides and are known to assemble into a variety of nanostructures. A specific type of peptide amphiphiles are known to self-assemble into one-dimensional nanostructures under physiological conditions, predominantly nanofibers with a cylindrical geometry. The resultant nanostructures could be highly bioactive and are of great interest in many biomedical applications, including tissue engineering, regenerative medicine, and drug delivery. In this context, we highlight our strategies for using molecular self-assembly as a toolbox to produce peptide amphiphile nanostructures and materials and efforts to translate this technology into applications as therapeutics. We also review our recent progress in using these materials for treating spinal cord injury, inducing angiogenesis, and for hard tissue regeneration and replacement.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up

TL;DR: The requirements of industrial processes regarding peptide release and stability, depending on several process parameters, are summarized, and some enrichment techniques for whey-derived peptides that are potentially applicable to industry are considered.
Journal ArticleDOI

Nanoscale Self-Assembly for Therapeutic Delivery.

TL;DR: The main objective of the projected review is to provide readers a concise and straightforward knowledge of basic concepts of supramolecular self-assembly process and how these highly functionalized and efficient nanomaterials can be useful in biomedical applications.
Journal ArticleDOI

Hydrogels that listen to cells: a review of cell-responsive strategies in biomaterial design for tissue regeneration

TL;DR: The growing ability to spatio-temporally control the behavior of cells and tissue with rationally designed responsive materials has the ability to allow control and autonomy to future generations of materials for tissue regeneration, in addition to providing understanding and mimicry of the dynamic and complex cellular niche.
Journal ArticleDOI

Peptide nanotubes: molecular organisations, self-assembly mechanisms and applications

TL;DR: The present review addresses the recent advances in their fundamental comprehension and mechanistic aspects of their latest downstream uses, including the Lanreotide peptide monodisperse nanotubes, as well as the kinetic and thermodynamic aspects of the corresponding self-assembly processes.
Journal ArticleDOI

Tuning the self-assembly of short peptides via sequence variations

TL;DR: The distinct roles of the noncovalent interactions and their impact on nanostructural templating using carefully designed hexapeptides, I2K2I2, I4K2, and KI4K are demonstrated.
References
More filters
Journal ArticleDOI

Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule

TL;DR: The ability of fibronectin to bind cells can be accounted for by the tetrapeptide L-arginyl-glycyl- L-aspartyl-L-serine, a sequence which is part of the cell attachment domain of fibronsectin and present in at least five other proteins.
PatentDOI

Self-assembly and mineralization of peptide-amphiphile nanofibers

TL;DR: In this paper, pH-induced self-assembly of a peptide-amphiphile was used to make a nanostructured fibrous scaffold reminiscent of extracellular matrix.
Journal ArticleDOI

Regeneration beyond the glial scar

TL;DR: Chondroitin and keratan sulphate proteoglycans are among the main inhibitory extracellular matrix molecules that are produced by reactive astrocytes in the glial scar, and they are believed to play a crucial part in regeneration failure.
Journal ArticleDOI

Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers

TL;DR: The artificial nanofiber scaffold induced very rapid differentiation of cells into neurons, while discouraging the development of astrocytes, linked to the amplification of bioactive epitope presentation to cells by the nanofibers.
Journal ArticleDOI

Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials

TL;DR: The scope of amino acid selection and alkyl tail modification in the peptide-amphiphile molecules are investigated, yielding nanofibers varying in morphology, surface chemistry, and potential bioactivity, demonstrating the chemically versatile nature of this supramolecular system.
Related Papers (5)