scispace - formally typeset
Journal ArticleDOI

Semiempirical van der Waals correction to the density functional description of solids and molecular structures

TLDR
In this article, the influence of a simple semi-empirical van der Waals (vdW) correction on the description of dispersive, covalent, and ionic bonds within density functional theory is studied.
Abstract
The influence of a simple semiempirical van der Waals (vdW) correction on the description of dispersive, covalent, and ionic bonds within density functional theory is studied. The correction is based on the asymptotic London form of dispersive forces and a damping function for each pair of atoms. It thus depends solely on the properties of the two atoms irrespective of their environment and is numerically very efficient. The correction is tested in comparison with results obtained using the generalized gradient approximation or the local density approximation for exchange and correlation. The results are also compared with reference values from experiment or quantum chemistry methods. In order to probe the universality and transferability of the semiempirical vdW correction, a range of solids and molecular systems with covalent, heteropolar, and vdW bonds are studied.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data

TL;DR: It is shown that the effective atomic C6 coefficients depend strongly on the bonding environment of an atom in a molecule, and the van der Waals radii and the damping function in the C6R(-6) correction method for density-functional theory calculations.
Journal ArticleDOI

Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections.

TL;DR: It is demonstrated that the computationally inexpensive DFT-D2 scheme yields reasonable predictions for the structure, bulk moduli, and cohesive energies of weakly bonded materials.
Journal ArticleDOI

B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals

TL;DR: In this paper, the B3LYP method augmented with a damped empirical dispersion term (−f(R)C6/R6) is shown to yield structures and cohesive energies, for a representative set of molecular crystals, in excellent agreement with experimental data.
Journal ArticleDOI

Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases

TL;DR: By applying the DFT‐D/plane‐wave approach a substantial agreement with experiments is found for the structure and energetics of polyethylene and graphite, two typical solids that are badly described by standard local and semilocal density functionals.
Journal ArticleDOI

A Strategy of Enhancing the Photoactivity of g-C3N4 via Doping of Nonmetal Elements: A First-Principles Study

TL;DR: In this article, an effective structural doping approach has been described to modify the photoelectrochemical properties of g-C3N4 by doping with nonmetal (sulfur or phosphorus) impurities.
References
More filters
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Special points for brillouin-zone integrations

TL;DR: In this article, a method for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector is given, where the integration can be over the entire zone or over specified portions thereof.
Journal ArticleDOI

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set

TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.
Journal ArticleDOI

Self-Consistent Equations Including Exchange and Correlation Effects

TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Related Papers (5)