scispace - formally typeset
Open AccessJournal ArticleDOI

Smad transcription factors

TLDR
The growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.
Abstract
Smad transcription factors lie at the core of one of the most versatile cytokine signaling pathways in metazoan biology-the transforming growth factor-beta (TGFbeta) pathway. Recent progress has shed light into the processes of Smad activation and deactivation, nucleocytoplasmic dynamics, and assembly of transcriptional complexes. A rich repertoire of regulatory devices exerts control over each step of the Smad pathway. This knowledge is enabling work on more complex questions about the organization, integration, and modulation of Smad-dependent transcriptional programs. We are beginning to uncover self-enabled gene response cascades, graded Smad response mechanisms, and Smad-dependent synexpression groups. Our growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

TGFβ in Cancer

TL;DR: The mechanistic basis and clinical relevance of TGFbeta's role in cancer is becoming increasingly clear, paving the way for a better understanding of the complexity and therapeutic potential of this pathway.
Journal ArticleDOI

TGFβ signalling in context.

TL;DR: The basic elements of the transforming growth factor-β (TGFβ) pathway were revealed and the concept of how the TGFβ signal travels from the membrane to the nucleus has been enriched with additional findings.
Journal ArticleDOI

Adipocyte differentiation from the inside out.

TL;DR: Interest in adipogenesis has increased markedly over the past few years with emphasis on the intersection between extracellular signals and the transcriptional cascade that regulates adipocyte differentiation.
Journal ArticleDOI

IL-17 Family Cytokines and the Expanding Diversity of Effector T Cell Lineages

TL;DR: The factors that specify differentiation of a new effector T cell lineage-Th17-have now been identified, providing a new arm of adaptive immunity and presenting a unifying model that can explain many heretofore confusing aspects of immune regulation, immune pathogenesis, and host defense.
Journal ArticleDOI

Non-Smad pathways in TGF-β signaling

TL;DR: This review focuses on recent advances in the understanding of the molecular and biochemical mechanisms of non-Smad pathways, and functions of these non- Smad pathways are discussed.
References
More filters
Journal ArticleDOI

TGF-beta signal transduction.

TL;DR: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms and mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
Journal ArticleDOI

Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor

TL;DR: It is demonstrated that Akt also regulates the activity of FKHRL1, a member of the Forkhead family of transcription factors, which triggers apoptosis most likely by inducing the expression of genes that are critical for cell death, such as the Fas ligand gene.
Journal ArticleDOI

Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus

TL;DR: Current understanding on the mechanisms of TGF-β signaling from cell membrane to the nucleus is presented and the transcriptional regulation of target gene expression is reviewed.
Journal ArticleDOI

Smad-dependent and Smad-independent pathways in TGF-beta family signalling.

TL;DR: Transforming growth factor-β (TGF-β) proteins regulate cell function, and have key roles in development and carcinogenesis, and combinatorial interactions in the heteromeric receptor and Smad complexes, receptor-interacting and Smadracing proteins, and cooperation with sequence-specific transcription factors allow substantial versatility and diversification of TGF- β family responses.
Journal ArticleDOI

The Transcriptional Coactivators p300 and CBP Are Histone Acetyltransferases

TL;DR: It is demonstrated that p300/CBP acetylates nucleosomes in concert with PCAF, a novel class of acetyltransferases in that it does not have the conserved motif found among various other acetyl transferases.
Related Papers (5)