scispace - formally typeset
Journal ArticleDOI

Specific Covalent Labeling of Recombinant Protein Molecules Inside Live Cells

B. Albert Griffin, +2 more
- 10 Jul 1998 - 
- Vol. 281, Iss: 5374, pp 269-272
Reads0
Chats0
TLDR
This system provides a recipe for slightly modifying a target protein so that it can be singled out from the many other proteins inside live cells and fluorescently stained by small nonfluorescent dye molecules added from outside the cells.
Abstract
Recombinant proteins containing four cysteines at the i , i + 1, i + 4, and i + 5 positions of an α helix were fluorescently labeled in living cells by extracellular administration of 4′,5′-bis(1,3,2-dithioarsolan-2-yl)fluorescein. This designed small ligand is membrane-permeant and nonfluorescent until it binds with high affinity and specificity to the tetracysteine domain. Such in situ labeling adds much less mass than does green fluorescent protein and offers greater versatility in attachment sites as well as potential spectroscopic and chemical properties. This system provides a recipe for slightly modifying a target protein so that it can be singled out from the many other proteins inside live cells and fluorescently stained by small nonfluorescent dye molecules added from outside the cells.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The Bioorthogonal Isonitrile–Chlorooxime Ligation

TL;DR: The reaction between isonitriles and chlorooximes is presented as a ligation that proceeds quickly and with high chemoselectivity in an aqueous environment and is orthogonal to the strain-promoted azide-alkyne cycloaddition (SPAAC).
Journal ArticleDOI

Imaging of the Alphavirus Capsid Protein during Virus Replication

TL;DR: These studies provide the first dynamic views of the alphavirus capsid protein in living cells and a system to define detailed mechanisms during alphvirus infection.
Journal ArticleDOI

Cell Membrane Bioconjugation and Membrane-Derived Nanomaterials for Immunotherapy.

TL;DR: The cell membrane conjugation strategies that have been investigated for cancer immunotherapy, the prevention of immune rejection to donor cells and tissues, and the induction of antigen-specific tolerance in autoimmune diseases are summarized.
Journal ArticleDOI

Fluorescence and bioluminescence procedures for functional proteomics.

TL;DR: Novel methodological advances include improved image acquisition and processing techniques and help linking in vitro observations to in vivo processes, which will pave the way for modeling of signaling cascades and other complex cellular events, an important step toward systems biology.
Journal ArticleDOI

The F-techniques: advances in receptor protein studies.

TL;DR: This review focuses on the application of the F-techniques to the study of receptor molecules and mechanisms in the last three years and provides information on new modalities that will further improve their applicability and widen the range of biological questions that can be addressed.
References
More filters
Journal ArticleDOI

The green fluorescent protein

TL;DR: In just three years, the green fluorescent protein from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology.
Journal ArticleDOI

Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability.

TL;DR: The reliability and sensitivity of the test have been increased to the point where it can in many cases replace the [3H]thymidine uptake assay to measure cell proliferation or survival in growth factor or cytotoxicity assays.
Journal ArticleDOI

Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin

TL;DR: New fluorescent indicators for Ca2+ that are genetically encoded without cofactors and are targetable to specific intracellular locations are constructed and dubbed ‘cameleons’.
Journal ArticleDOI

Crystal structure of the Aequorea victoria green fluorescent protein.

TL;DR: The green fluorescent protein (GFP) from the Pacific Northwest jellyfish Aequorea victoria has generated intense interest as a marker for gene expression and localization of gene products.
Journal ArticleDOI

Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer

TL;DR: The results demonstrate that the production of more and better GFP variants is possible and worthwhile, and facilitates multicolor imaging of differential gene expression, protein localization or cell fate.
Related Papers (5)