scispace - formally typeset
Journal ArticleDOI

Specific Covalent Labeling of Recombinant Protein Molecules Inside Live Cells

B. Albert Griffin, +2 more
- 10 Jul 1998 - 
- Vol. 281, Iss: 5374, pp 269-272
Reads0
Chats0
TLDR
This system provides a recipe for slightly modifying a target protein so that it can be singled out from the many other proteins inside live cells and fluorescently stained by small nonfluorescent dye molecules added from outside the cells.
Abstract
Recombinant proteins containing four cysteines at the i , i + 1, i + 4, and i + 5 positions of an α helix were fluorescently labeled in living cells by extracellular administration of 4′,5′-bis(1,3,2-dithioarsolan-2-yl)fluorescein. This designed small ligand is membrane-permeant and nonfluorescent until it binds with high affinity and specificity to the tetracysteine domain. Such in situ labeling adds much less mass than does green fluorescent protein and offers greater versatility in attachment sites as well as potential spectroscopic and chemical properties. This system provides a recipe for slightly modifying a target protein so that it can be singled out from the many other proteins inside live cells and fluorescently stained by small nonfluorescent dye molecules added from outside the cells.

read more

Content maybe subject to copyright    Report

Citations
More filters
Patent

Methods and compositions for synthesis of nucleic acid molecules using multiple recognition sites

TL;DR: In this article, the authors present compositions and methods for recombinational cloning of two or more different nucleic acid molecules, which may be fused together while in other embodiments the molecules are inserted into distinct sites in a vector.
Journal ArticleDOI

Photophysics of a water-soluble rylene dye: Comparison with other fluorescent molecules for biological applications

TL;DR: The photophysical properties of a new water-soluble fluorescent dye based on the perylene diimide chromophore were investigated at the ensemble and single molecule level as discussed by the authors, where the fluorophore has an absorption maximum at 567 nm and a high quantum yield of fluorescence (0.6).
Patent

Expanding the eukaryotic genetic code

TL;DR: In this paper, the authors provide compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells, such as orthogonal tRNAs, orthoglobal aminoacyl-tRNA synthetases and unnatural amino acids.
Journal ArticleDOI

Highly activatable and environment-insensitive optical highlighters for selective spatiotemporal imaging of target proteins

TL;DR: A novel design strategy for a new class of caged BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophores, based on the use of photoremovable protecting groups (PRPGs) with high reduction potentials that serve as both a photosensitive unit and a fluorescence quencher via photoinduced electron transfer (PeT).
Journal ArticleDOI

Selective N-terminal functionalization of native peptides and proteins.

TL;DR: A highly site-selective modification of peptides/proteins with aldehydes or carbohydrates under mild conditions was achieved.
References
More filters
Journal ArticleDOI

The green fluorescent protein

TL;DR: In just three years, the green fluorescent protein from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology.
Journal ArticleDOI

Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability.

TL;DR: The reliability and sensitivity of the test have been increased to the point where it can in many cases replace the [3H]thymidine uptake assay to measure cell proliferation or survival in growth factor or cytotoxicity assays.
Journal ArticleDOI

Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin

TL;DR: New fluorescent indicators for Ca2+ that are genetically encoded without cofactors and are targetable to specific intracellular locations are constructed and dubbed ‘cameleons’.
Journal ArticleDOI

Crystal structure of the Aequorea victoria green fluorescent protein.

TL;DR: The green fluorescent protein (GFP) from the Pacific Northwest jellyfish Aequorea victoria has generated intense interest as a marker for gene expression and localization of gene products.
Journal ArticleDOI

Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer

TL;DR: The results demonstrate that the production of more and better GFP variants is possible and worthwhile, and facilitates multicolor imaging of differential gene expression, protein localization or cell fate.
Related Papers (5)