scispace - formally typeset
Open AccessJournal ArticleDOI

Strategies to reduce the global carbon footprint of plastics

Jiajia Zheng, +1 more
- 01 May 2019 - 
- Vol. 9, Iss: 5, pp 374-378
TLDR
In this article, the authors compile a dataset covering ten conventional and five bio-based plastics and their life-cycle GHG emissions under various mitigation strategies and demonstrate the need for integrating energy, materials, recycling, and demand management strategies to curb growing life cycle emissions from plastics.
Abstract
Over the past four decades, global plastics production has quadrupled1. If this trend were to continue, the GHG emissions from plastics would reach 15% of the global carbon budget by 20502. Strategies to mitigate the life-cycle GHG emissions of plastics, however, have not been evaluated on a global scale. Here, we compile a dataset covering ten conventional and five bio-based plastics and their life-cycle GHG emissions under various mitigation strategies. Our results show that the global life-cycle GHG emissions of conventional plastics were 1.7 Gt of CO2-equivalent (CO2e) in 2015, which would grow to 6.5 GtCO2e by 2050 under the current trajectory. However, aggressive application of renewable energy, recycling and demand-management strategies, in concert, has the potential to keep 2050 emissions comparable to 2015 levels. In addition, replacing fossil fuel feedstock with biomass can further reduce emissions and achieve an absolute reduction from the current level. Our study demonstrates the need for integrating energy, materials, recycling and demand-management strategies to curb growing life-cycle GHG emissions from plastics. The life-cycle GHG emissions from plastics are expected to increase. Here, it is shown that an aggressive strategy of decarbonizing energy infrastructure, improving recycling, adopting bio-based plastics and reducing demand is required to keep emissions below 2015 levels.

read more

Content maybe subject to copyright    Report

UC Santa Barbara
UC Santa Barbara Previously Published Works
Title
Strategies to reduce the global carbon footprint of plastics
Permalink
https://escholarship.org/uc/item/8pp2t7v8
Journal
NATURE CLIMATE CHANGE, 9(5)
ISSN
1758-678X
Authors
Zheng, Jiajia
Suh, Sangwon
Publication Date
2019
DOI
10.1038/s41558-019-0459-z
Peer reviewed
eScholarship.org Powered by the California Digital Library
University of California











 !!"!
#
$%&%' !() 
*+,(,
+
 *%&%
 !&
!-.!
 *%&%
 *%&% !/%#
+

+,(0(%#
+
*+,(,*
&!! **
!1!+,(,
!+,(2!  1*
 
* **
 *%&%
!

%! ! +345,36(,+,(
!$#7%8' 59)
%*(5) !
-*5)*+,(
295.
+/3!*+,,
4

% !! !
!*
9:/
&
+

*!
;*! () 
!$%&%'
5
  *
%&% !*"-
<%&% !
8! .!*.! =!
 
6:
>.!* *%&%
! .!
+
0(5) ?
!.!+9403
#
+
!*
4
>.  .
!1
9
>..!*
>.@**$>.@'>.@**A!$>.@A'
 B!.C!*D*!! .
!;.!*@*
7$@E7'@**=*1$@&7'A!$A@'!*
D!!
+
!
.!*!#
!FA
(0
2+,/
! .!+,(3!*+,)
=-*
/
E** *%&% 
!G,,)*%&% G
!!*(,./()
5
7*
%&% !*!.
4

!*!
6
!%&% 
. . $E'!
+,
&  !*!
!!
5+
&!
%&% !E  .
-.!;!
!%&%; 

 .!**.
!!!.  .!*+,(,;
.! *  1
1


 !"*= !!!**
,,)$!'*+,(,
*=!
#"* E!*,,)
*+,(,2!!E
=,,)H!
$%!& !
9)+)
;=
!  !! ! 
%&%;1,,)*
9

Citations
More filters
Journal ArticleDOI

Degradation Rates of Plastics in the Environment

TL;DR: The amount of plastics accumulating in the environment is growing rapidly, yet our understanding of its persistence is very limited as discussed by the authors, and the amount of plastic waste is currently generated at a rate approaching 400 Mt year−1.
Journal ArticleDOI

Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19

TL;DR: In this paper, a prospective outlook on how the disruption caused by COVID-19 can act as a catalyst for short-term and long-term changes in plastic waste management practices throughout the world is given.
Journal ArticleDOI

Chemical recycling to monomer for an ideal, circular polymer economy

TL;DR: In this paper, the authors present a vision for realizing a circular polymer economy based on Chemical Recycling to Monomer (CRM) and examine the energy efficiency of polymerization and other challenges in developing practical and scalable CRM processes.
References
More filters
Journal ArticleDOI

Production, use, and fate of all plastics ever made

TL;DR: By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, this work presents the first global analysis of all mass-produced plastics ever manufactured.
Journal ArticleDOI

Plastic waste inputs from land into the ocean

TL;DR: This work combines available data on solid waste with a model that uses population density and economic status to estimate the amount of land-based plastic waste entering the ocean, which is estimated to be 275 million metric tons.
Journal ArticleDOI

The ecoinvent database version 3 (part I): overview and methodology

TL;DR: With version 3, the ecoinvent database substantially expands the goals and scopes of LCA studies it can support, and the new system models allow new, different studies to be performed.
Related Papers (5)
Frequently Asked Questions (19)
Q1. What contributions have the authors mentioned in the paper "Strategies to reduce the global carbon footprint of plastics" ?

In this paper, the authors compile a new dataset covering ten conventional and five bio-based plastics and their life cycle GHG emissions under various mitigation strategies. 

With a plastics demand growth rate of 4% year-1, a complete replacement of fossilbased plastics by corn-based plastics is estimated to reduce global life cycle GHG emissions of plastics to 5.6 

A complete shift of the plastics production of approximately 250 million tones to bio-based plastics would require as much as 5 percent of all arable land26, which, depending on where they take place, may undermine the carbon benefits of bio-based plastics. 

(2) Renewable energy: the energy mix of plastics supply chain is gradually decarbonised and reaches 100% renewables (i.e. wind power and biogas) by 2050. 

Substituting 65.8% of the world’s conventional plastics with bio-based plastics is estimated to avoid 241 to 316 Mt CO2e per year13. 

Another strategy to reduce GHG emissions of plastics is recycling, which reduces, in part, carbon-intensive virgin polymer production19 while preventing GHG emissions from some end-of-life (EoL) processes such as incineration20. 

To account for the GHG emissions credits from recycling EoL plastics, a substitution ratio of 80% is applied, meaning that 1 kg of recycled plastics avoid producing 0.8 kg of average market-mix plastics20. 

For sugarcane-based PE, after adding LUC emissions, the net emissions in 2015 under the baseline scenario ranged from -0.7 to 1.8 kg CO2e/kg Bio-PE40 and average value was taken. 

Even if fossil feedstock is used as the sole source for plastics production, 100% renewable energy will reduce the average life cycle GHG emissions by half from the baseline emissions. 

In 2017, the total global production of bio-based plastics reached 2.05 Mt, and is projected to grow by 20% over the next five years17. 

Their results show that the global life cycle GHG emissions of conventional plastics was 1.7 Gt CO2e in 2015, which would grow to 6.5 Gt CO2e by 2050 under the current trajectory. 

under the 100% renewable energy scenario, incineration becomes the largest contributor to the total emissions for bio-based plastics (Fig. 3b). 

Resin production and conversion stages are major contributors to the life cycle GHG emissions of all feedstock types under current energy mix (Fig. 3a). 

In this case, the total global life cycle GHG emissions of plastics become 1.7 Gt CO2e, or 3.5% of the global annual GHG emissions in 2015. 

Together with technological innovations in plastics recycling, fiscal policies, such as carbon pricing and incentivising recycling infrastructure expansion, should be considered to overcome such barriers23,24. 

The biological carbon sequestration credits were subtracted from corresponding life cycle GHG emission values for bio-based plastics (e.g. 3.14 kg CO2/kg Bio-PE, 1.83 kg CO2/kg PLA, 2.05 kg CO2/kg PHB37 and 1.94 kg CO2e/kg TPS38). 

A report regarding the technical substitution potential of bio-based polymers concludes that 90% of the conventional polymers can be technically replaced worldwide48. 

Their study demonstrates the need for integrating energy, materials, recycling, and demand management strategies to curb the growing life cycle GHG emissions from plastics. 

The authors evaluate the following mitigation strategies and their combinations:(1) Bio-based plastics: fossil-based plastics are gradually substituted by biobased plastics until a complete phase-out of fossil-based plastics by 2050.