scispace - formally typeset
Journal ArticleDOI

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

TLDR
Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Abstract
A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups –Br, –NH2, –OC3H7, –OC5H11, –C2H4, and –C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.

read more

Citations
More filters
Journal ArticleDOI

Zeolite-like Metal−Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts

TL;DR: The Mn-metallated porphyrin encapsulated in rho-ZMOF shows catalytic activity toward the oxidation of cyclohexane, with turn-over numbers, higher than reported for similar heterogeneous systems, and the system can be recycled up to 11 cycles, which represents a longer lifetime than reports for any other system.
Journal ArticleDOI

Design and synthesis of 3d-4f metal-based zeolite-type materials with a 3D nanotubular structure encapsulated "water" pipe.

TL;DR: A nanotubular 3D heterometallic zeolitic polymer was designed and synthesized by simply tuning the amount of coordinated water on the Mn ion in the molecular ladder polymer.
Journal ArticleDOI

Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels

TL;DR: Fe2(BDP)3 (BDP2– = 1,4-benzenedipyrazolate), a highly stable framework with triangular channels that effect the separation of hexane isomers according to the degree of branching is reported, showing preliminary promise for enhancing a separations process central to gasoline production.
Journal ArticleDOI

High-Capacity Methane Storage in Metal−Organic Frameworks M2(dhtp): The Important Role of Open Metal Sites

TL;DR: It is found that metal-organic framework compounds M(2)(dhtp) (open metal M = Mg, Mn, Co, Ni, Zn; dhtp = 2,5-dihydroxyterephthalate) possess exceptionally large densities of open metal sites, and the primary CH(4) adsorption occurs directly on the openMetal sites.
References
More filters
Journal ArticleDOI

van der Waals Volumes and Radii

Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Journal ArticleDOI

Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.

TL;DR: Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.
Journal ArticleDOI

Aerogels-Airy Materials: Chemistry, Structure, and Properties.

TL;DR: The design of such a filigrane network requires the very careful control of chemical parameters and the reward is an assortment of different property profiles owing to the richness of possible variations.
Journal ArticleDOI

Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties

TL;DR: In this paper, gas sorption isotherm measurements performed on the evacuated derivatives of four porous metal-organic frameworks (MOF-n), Zn(BDC)·(DMF)(H2O) (DMF = N,N‘-dimethylformamide, BDC = 1,4-benzenedicarboxylate) (MoF-2) and Zn3(bDC)3·6CH3OH(MOF)-3, Zn2(BTC)NO3·(C2H5OH
Related Papers (5)