scispace - formally typeset
Journal ArticleDOI

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

TLDR
Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Abstract
A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups –Br, –NH2, –OC3H7, –OC5H11, –C2H4, and –C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.

read more

Citations
More filters
Journal ArticleDOI

Post-Combustion CO2 Capture Using Solid Sorbents: A Review

TL;DR: In this article, a variety of promising sorbents such as activated carbonaceous materials, microporous/mesoporous silica or zeolites, carbonates, and polymeric resins loaded with or without nitrogen functionality for the removal of CO2 from the flue gas streams have been reviewed.
Journal ArticleDOI

Hybrid Organic−Inorganic Polyoxometalate Compounds: From Structural Diversity to Applications

TL;DR: Polyoxometalates (POMs) are discrete anionic metaloxygen clusters which can be regarded as soluble oxide fragments which play a great role in various areas ranging from catalysis, medicine, electrochemistry, photochromism,5 to magnetism.
Journal ArticleDOI

Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5).

TL;DR: The air-free compound exhibits the highest gravimetric and volumetric H2 uptake capacities yet demonstrated for a cryogenic hydrogen storage material and no loss of capacity was apparent during 24 complete adsorption−desorpti...
Journal ArticleDOI

De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities

TL;DR: Computational modelling is used to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area that had high storage capacities for hydrogen and carbon dioxide and was in excellent agreement with predictions from modelling.
References
More filters
Journal ArticleDOI

van der Waals Volumes and Radii

Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Journal ArticleDOI

Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.

TL;DR: Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.
Journal ArticleDOI

Aerogels-Airy Materials: Chemistry, Structure, and Properties.

TL;DR: The design of such a filigrane network requires the very careful control of chemical parameters and the reward is an assortment of different property profiles owing to the richness of possible variations.
Journal ArticleDOI

Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties

TL;DR: In this paper, gas sorption isotherm measurements performed on the evacuated derivatives of four porous metal-organic frameworks (MOF-n), Zn(BDC)·(DMF)(H2O) (DMF = N,N‘-dimethylformamide, BDC = 1,4-benzenedicarboxylate) (MoF-2) and Zn3(bDC)3·6CH3OH(MOF)-3, Zn2(BTC)NO3·(C2H5OH
Related Papers (5)