scispace - formally typeset
Journal ArticleDOI

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

TLDR
Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Abstract
A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups –Br, –NH2, –OC3H7, –OC5H11, –C2H4, and –C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.

read more

Citations
More filters
Journal ArticleDOI

MOF water harvesters.

TL;DR: The latest progress in the development of MOFs capable of extracting water from air and the design of atmospheric water harvesters deploying such MOFs are reviewed and future directions for this emerging field, encompassing both material and device improvements, are outlined.
Journal ArticleDOI

Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis

TL;DR: While bulk-sized metal–organic frameworks (MOFs) face limits to their utilization in various research fields such as energy storage applications, nanoarchitectonics is believed to be a possible solution.
Journal ArticleDOI

Covalent Chemistry beyond Molecules

TL;DR: Metal-organic frameworks are exemplars of how covalent chemistry has led to porosity with designed metrics and functionality, chemically-rich sequences of information within their frameworks, and well-defined mesoscopic constructs in which nanoMOFs enclose inorganic nanocrystals and give them new levels of spatial definition, stability, and functionality.
Journal ArticleDOI

A Mesoporous Metal–Organic Framework

TL;DR: An approach that avoids interpenetration is reported by using a secondary linker to stabilize a highly open framework structure by crosslinking an extended Pt3O4topology and the resulting new mesoporous MOF material, DUT-6, shows no interPenetration and has an extremely high gas adsorption capacity for n-butane, hydrogen, and methane.
References
More filters
Journal ArticleDOI

van der Waals Volumes and Radii

Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Journal ArticleDOI

Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.

TL;DR: Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.
Journal ArticleDOI

Aerogels-Airy Materials: Chemistry, Structure, and Properties.

TL;DR: The design of such a filigrane network requires the very careful control of chemical parameters and the reward is an assortment of different property profiles owing to the richness of possible variations.
Journal ArticleDOI

Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties

TL;DR: In this paper, gas sorption isotherm measurements performed on the evacuated derivatives of four porous metal-organic frameworks (MOF-n), Zn(BDC)·(DMF)(H2O) (DMF = N,N‘-dimethylformamide, BDC = 1,4-benzenedicarboxylate) (MoF-2) and Zn3(bDC)3·6CH3OH(MOF)-3, Zn2(BTC)NO3·(C2H5OH
Related Papers (5)