scispace - formally typeset
Journal ArticleDOI

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

TLDR
Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Abstract
A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups –Br, –NH2, –OC3H7, –OC5H11, –C2H4, and –C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.

read more

Citations
More filters
Journal ArticleDOI

Syntheses, structures, and optical properties of novel zinc(II) complexes with multicarboxylate and N-donor ligands

TL;DR: The results indicate that the multicarboxylate OA(4-) ligand can adopt varied coordination modes in the formation of the complexes and the influence of the N-donor ligand on the structure of the complex is discussed.
Journal ArticleDOI

Expanded Sodalite-Type Metal−Organic Frameworks: Increased Stability and H2 Adsorption through Ligand-Directed Catenation

TL;DR: Catenation helps to stabilize the framework toward collapse upon desolvation, leading to an increase in the surface area and the hydrogen storage capacity and the total hydrogen uptake in desolvated 3 reaches 4.5 wt % and 37 g/L at 80 bar and 77 K, demonstrating that control of catenation can be an important factor in the generation of hydrogen storage materials.
Journal ArticleDOI

Understanding Water Adsorption in Cu−BTC Metal−Organic Frameworks

TL;DR: In this article, molecular simulations were performed to study the adsorption behavior of water in the metal-organic framework Cu−BTC and the results showed that water has a surprisingly large affinity for the metal center in Cu− BTC compared to other molecules like carbon dioxide, nitrogen, oxygen, or hydrocarbons.
Journal ArticleDOI

Metall‐organische Gerüste für die Katalyse

TL;DR: The Vorzuge und Einschrankungen von Metall-organischen Gerusten (MOFs) auf dem Gebiet der Katalyse and der Grunen Chemie bilden das Thema dieses Kurzaufsatzes as mentioned in this paper.
References
More filters
Journal ArticleDOI

van der Waals Volumes and Radii

Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Journal ArticleDOI

Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.

TL;DR: Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.
Journal ArticleDOI

Aerogels-Airy Materials: Chemistry, Structure, and Properties.

TL;DR: The design of such a filigrane network requires the very careful control of chemical parameters and the reward is an assortment of different property profiles owing to the richness of possible variations.
Journal ArticleDOI

Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties

TL;DR: In this paper, gas sorption isotherm measurements performed on the evacuated derivatives of four porous metal-organic frameworks (MOF-n), Zn(BDC)·(DMF)(H2O) (DMF = N,N‘-dimethylformamide, BDC = 1,4-benzenedicarboxylate) (MoF-2) and Zn3(bDC)3·6CH3OH(MOF)-3, Zn2(BTC)NO3·(C2H5OH
Related Papers (5)