scispace - formally typeset
Journal ArticleDOI

The cell transmission model, part ii: network traffic

TLDR
This article shows how the evolution of multi-commodity traffic flows over complex networks can be predicted over time, based on a simple macroscopic computer representation of traffic flow that is consistent with the kinematic wave theory under all traffic conditions.
Abstract
This article shows how the evolution of multi-commodity traffic flows over complex networks can be predicted over time, based on a simple macroscopic computer representation of traffic flow that is consistent with the kinematic wave theory under all traffic conditions. The method does not use ad hoc procedures to treat special situations. After a brief review of the basic model for one link, the article describes how three-legged junctions can be modeled. It then introduces a numerical procedure for networks, assuming that a time-varying origin-destination (O-D) table is given and that the proportion of turns at every junction is known. These assumptions are reasonable for numerical analysis of disaster evacuation plans. The results are then extended to the case where, instead of the turning proportions, the best routes to each destination from every junction are known at all times. For technical reasons explained in the text, the procedure is more complicated in this case, requiring more computer memory and more time for execution. The effort is estimated to be about an order of magnitude greater than for the static traffic assignment problem on a network of the same size. The procedure is ideally suited for parallel computing. It is hoped that the results in the article will lead to more realistic models of freeway flow, disaster evacuations and dynamic traffic assignment for the evening commute.

read more

Citations
More filters
Journal ArticleDOI

From the modelling of driver's behavior to hydrodynamic models and problems of traffic flow

TL;DR: A critical analysist is provided for the optimization and control of roads along a road or networks of roads and the evolution in time and space of the conditions: cardensity andvelocity.
Journal ArticleDOI

Non-unique flows in macroscopic first-order intersection models

TL;DR: It is shown that intersection models – with realistic behavioral assumptions, and in simple configurations – can produce non-unique flow patterns under identical boundary conditions and it is revealed that the undesirable model properties are not solved but enhanced – when diverting from a point-like to a spatial modeling approach.
Journal ArticleDOI

A Polymorphic Dynamic Network Loading Model

TL;DR: A polymorphic dynamic network loading (PDNL) model is developed and discretized to integrate a variety of macroscopic traffic flow and node models and offers several prominent advantages.
Journal ArticleDOI

Network-Level Coordinated Speed Optimization and Traffic Light Control for Connected and Automated Vehicles

TL;DR: The results show that coordinated signal timing and speed optimization improved network performance in comparison with cases that either signal timing parameters or average speed of vehicles are optimized.
Journal ArticleDOI

Hybrid simulated annealing and genetic algorithm for optimizing arterial signal timings under oversaturated traffic conditions

TL;DR: A hybrid algorithm based on simulated annealing (SA) and a genetic algorithm (GA) for arterial signal timing optimization and results indicate that the SA-GA algorithm outperforms both SA and GA in terms of solution quality and convergence rate.
References
More filters
Journal ArticleDOI

Shock Waves on the Highway

TL;DR: In this article, a simple theory of traffic flow is developed by replacing individual vehicles with a continuous fluid density and applying an empirical relation between speed and density, which is a simple graph-shearing process for following the development of traffic waves.
Journal ArticleDOI

Nonlinear Effects in the Dynamics of Car Following

TL;DR: In this paper, it was shown that a small amplitude disturbance propagates through a series of cars in the manner described by linear theories, except that the dependence of the wave velocity on the car velocity causes an accleration wave to spread as it propagates and a deceleration wave forming a stable shock.
Journal ArticleDOI

A simplified theory of kinematic waves in highway traffic, part I: General theory

TL;DR: In this paper, it is shown how a formal solution for A ( x, t ) can be evaluated directly from boundary or initial conditions without evaluation at intermediate times and positions, and the correct solution, which is the lower envelope of all such formal solutions, will automatically have discontinuities in slope describing the passage of a shock.
Journal ArticleDOI

A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks

TL;DR: In this article, the authors proposed a method to relate the cumulative flow curve at any junction to the net cumulative entrance flow at this junction, and the cumulative curve for the freeway at the next upstream junction and/or the next downstream junction.
Related Papers (5)