scispace - formally typeset
Open AccessJournal ArticleDOI

The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches

TLDR
A critical overview is provided on how understanding of the physiological and molecular controls of N assimilation under varying environmental conditions in crops has been improved through the use of combined approaches, mainly based on whole-plant physiology, quantitative genetics, and forward and reverse genetics approaches.
Abstract
In this review, recent developments and future prospects of obtaining a better understanding of the regulation of nitrogen use efficiency in the main crop species cultivated in the world are presented. In these crops, an increased knowledge of the regulatory mechanisms controlling plant nitrogen economy is vital for improving nitrogen use efficiency and for reducing excessive input of fertilizers, while maintaining an acceptable yield. Using plants grown under agronomic conditions at low and high nitrogen fertilization regimes, it is now possible to develop whole-plant physiological studies combined with gene, protein, and metabolite profiling to build up a comprehensive picture depicting the different steps of nitrogen uptake, assimilation, and recycling to the final deposition in the seed. A critical overview is provided on how understanding of the physiological and molecular controls of N assimilation under varying environmental conditions in crops has been improved through the use of combined approaches, mainly based on whole-plant physiology, quantitative genetics, and forward and reverse genetics approaches. Current knowledge and prospects for future agronomic development and application for breeding crops adapted to lower fertilizer input are explored, taking into account the world economic and environmental constraints in the next century.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Photosynthesis under stressful environments: An overview

TL;DR: Progress made during the last two decades in producing transgenic lines of different C3 crops with enhanced photosynthetic performance is discussed, which was reached by either the overexpression of C3 enzymes or transcription factors or the incorporation of genes encoding C4 enzymes into C3 plants.
Journal ArticleDOI

Plant nitrogen assimilation and use efficiency.

TL;DR: The limiting factors in plant metabolism for maximizing NUE are different at high and low N supplies, indicating great potential for improving the NUE of current cultivars, which were bred in well-fertilized soil.
Journal ArticleDOI

N 2 O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

TL;DR: In this paper, the relationship between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, us- ing known global atmospheric removal rates and concentra- tion growth of N2O as a proxy for overall emissions.
Journal ArticleDOI

Abiotic and biotic stress combinations

TL;DR: This review will provide an update on recent studies focusing on the response of plants to a combination of different stresses, and address how different stress responses are integrated and how they impact plant growth and physiological traits.
Journal ArticleDOI

Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture

TL;DR: This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising.
References
More filters
Journal ArticleDOI

Improving Nitrogen Use Efficiency for Cereal Production

TL;DR: The Consultative Group on International Agricultural Research (CGIAR) linked with advanced research programs at universities and research institutes is uniquely positioned to refine fertilizer N use in the world via the extension of improved NUE hybrids and cultivars and management practices in both the developed and developing world.
Journal ArticleDOI

Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture

TL;DR: It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.
Journal ArticleDOI

Metabolomics by numbers: acquiring and understanding global metabolite data.

TL;DR: In this postgenomic era, there is a specific need to assign function to orphan genes in order to validate potential targets for drug therapy and to discover new biomarkers of disease.
Journal ArticleDOI

Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices

TL;DR: The anticipated next doubling of global food production would be associated with approximately 3-fold increases in nitrogen and phosphorus fertilization rates, a doubling of the irrigated land area, and an 18% increase in cropland, which would have dramatic impacts on the diversity, composition, and functioning of the remaining natural ecosystems.
Related Papers (5)