scispace - formally typeset
Journal ArticleDOI

The effect of nickel doping on electron and phonon transport in the n-type nanostructured thermoelectric material CoSbS

Reads0
Chats0
TLDR
In this article, the effect of Ni doping on both electron and phonon transport properties of nanostructured CoSbS has been investigated and a more than 2 times increase on figure-of-merit (ZT) was found.
Abstract
The effect of Ni doping on both electron and phonon transport properties of nanostructured CoSbS has been investigated in this study. We found a more than 2 times increase on figure-of-merit (ZT). The noticeable enhancement is mainly attributed to the optimized carrier concentration, high effective mass and strong electron–phonon scattering upon Ni doping. A ZT of 0.5 was achieved at 873 K together with a power factor of 20 μW cm−1 K−2 for the Ni doped CoSbS samples. The reduced lattice thermal conductivity via the strong electron–phonon scattering for Ni doped CoSbS samples is confirmed by the quantitative calculation of the various phonon scattering mechanisms according to the Callaway model.

read more

Citations
More filters
Journal ArticleDOI

Advances in thermoelectrics

TL;DR: In this article, a thermoelectric generator is used to directly convert heat into electricity, which holds great promise for tackling the ever-increasing energy sustainability issue in the future.
Journal ArticleDOI

High Thermoelectric Performance in Electron-Doped AgBi3S5 with Ultralow Thermal Conductivity

TL;DR: In this paper, the authors reported electron-doped AgBi3S5 as a new high-performance nontoxic thermoelectric material, which is attributed to its unusual vibrational properties: double rattling phonon modes associated with Ag and Bi atoms.
Journal ArticleDOI

Tellurium doped n-type Zintl Zr3Ni3Sb4 thermoelectric materials: Balance between carrier-scattering mechanism and bipolar effect

TL;DR: In this article, a relatively good ZT of ∼0.6 was achieved by Te doping on the Sb site, which can be attributed to the combination of high majority-carrier concentration and enlarged band gap.
References
More filters
Journal ArticleDOI

Complex thermoelectric materials.

TL;DR: A new era of complex thermoelectric materials is approaching because of modern synthesis and characterization techniques, particularly for nanoscale materials, and the strategies used to improve the thermopower and reduce the thermal conductivity are reviewed.
Journal ArticleDOI

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys

TL;DR: Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects, which makes these materials useful for cooling and power generation.
BookDOI

CRC Handbook of Thermoelectrics

TL;DR: In this article, Rowe et al. proposed a method for reducing the thermal conductivity of a thermoelectric generator by reducing the carrier concentration of the generator, which was shown to improve the generator's performance.
Journal ArticleDOI

High-performance bulk thermoelectrics with all-scale hierarchical architectures

TL;DR: It is shown that heat-carrying phonons with long mean free paths can be scattered by controlling and fine-tuning the mesoscale architecture of nanostructured thermoelectric materials, and an increase in ZT beyond the threshold of 2 highlights the role of, and need for, multiscale hierarchical architecture in controlling phonon scattering in bulk thermoeLECTrics.
Related Papers (5)