scispace - formally typeset
Open AccessJournal ArticleDOI

The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture

Reads0
Chats0
TLDR
A connectivity-based parcellation framework is designed that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity architecture and provides a fine-grained, cross-validated atlas and contains information on both anatomical and functional connections.
Abstract
The human brain atlases that allow correlating brain anatomy with psychological and cognitive functions are in transition from ex vivo histology-based printed atlases to digital brain maps providing multimodal in vivo information. Many current human brain atlases cover only specific structures, lack fine-grained parcellations, and fail to provide functionally important connectivity information. Using noninvasive multimodal neuroimaging techniques, we designed a connectivity-based parcellation framework that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity architecture. The resulting human Brainnetome Atlas, with 210 cortical and 36 subcortical subregions, provides a fine-grained, cross-validated atlas and contains information on both anatomical and functional connections. Additionally, we further mapped the delineated structures to mental processes by reference to the BrainMap database. It thus provides an objective and stable starting point from which to explore the complex relationships between structure, connectivity, and function, and eventually improves understanding of how the human brain works. The human Brainnetome Atlas will be made freely available for download at http://atlas.brainnetome.org, so that whole brain parcellations, connections, and functional data will be readily available for researchers to use in their investigations into healthy and pathological states.

read more

Citations
More filters
Journal ArticleDOI

Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI

TL;DR: The results suggest that gwMRF parcellations reveal neurobiologically meaningful features of brain organization and are potentially useful for future applications requiring dimensionality reduction of voxel-wise fMRI data.
Posted ContentDOI

Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI

TL;DR: The results suggest that gwMRF parcellations reveal neurobiologically meaningful features of brain organization and are potentially useful for future applications requiring dimensionality reduction of voxel-wise fMRI data.
Journal ArticleDOI

Mapping the human brain's cortical-subcortical functional network organization

TL;DR: This whole‐brain network atlas – released as an open resource for the neuroscience community – places all brain structures across both cortex and subcortex into a single large‐scale functional framework, with the potential to facilitate a variety of studies investigating large-scale functional networks in health and disease.
Journal ArticleDOI

Imaging-based parcellations of the human brain

TL;DR: A recent explosion of in vivo MRI-based approaches to identify and parcellate the brain on the basis of a wealth of different features, ranging from local properties of brain tissue to long-range connectivity patterns, in addition to structural and functional markers as mentioned in this paper.
References
More filters
Journal ArticleDOI

Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain

TL;DR: An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute was performed and it is believed that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain.
Journal ArticleDOI

Distributed Hierarchical Processing in the Primate Cerebral Cortex

TL;DR: A summary of the layout of cortical areas associated with vision and with other modalities, a computerized database for storing and representing large amounts of information on connectivity patterns, and the application of these data to the analysis of hierarchical organization of the cerebral cortex are reported on.
Journal ArticleDOI

The WU-Minn Human Connectome Project: An Overview

TL;DR: Progress made during the first half of the Human Connectome Project project in refining the methods for data acquisition and analysis provides grounds for optimism that the HCP datasets and associated methods and software will become increasingly valuable resources for characterizing human brain connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.
Related Papers (5)