scispace - formally typeset
Journal ArticleDOI

The missing memristor found

Dmitri B. Strukov, +3 more
- 01 May 2008 - 
- Vol. 453, Iss: 7191, pp 80-83
TLDR
It is shown, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage.
Abstract
Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current-voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Nanoscale Memristor Device as Synapse in Neuromorphic Systems

TL;DR: A nanoscale silicon-based memristor device is experimentally demonstrated and it is shown that a hybrid system composed of complementary metal-oxide semiconductor neurons and Memristor synapses can support important synaptic functions such as spike timing dependent plasticity.
Journal ArticleDOI

Memristive devices for computing

TL;DR: The performance requirements for computing with memristive devices are examined and how the outstanding challenges could be met are examined.
Journal ArticleDOI

Memristive switching mechanism for metal/oxide/metal nanodevices.

TL;DR: Experimental evidence is provided to support this general model of memristive electrical switching in oxide systems, and micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching are built.
Journal ArticleDOI

Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells

TL;DR: The trap states on the surface and grain boundaries of the perovskite materials are demonstrated to be the origin of photocurrent hysteresis and that the fullerene layers deposited onperovskites can effectively passivate these charge trap states and eliminate the notorious photocurrent Hysteresi.
References
More filters
Journal ArticleDOI

Memristor-The missing circuit element

TL;DR: In this article, the memristor is introduced as the fourth basic circuit element and an electromagnetic field interpretation of this relationship in terms of a quasi-static expansion of Maxwell's equations is presented.
Journal ArticleDOI

Nanoionics-based resistive switching memories

TL;DR: A coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms into metal-insulator-metal systems, and a brief look into molecular switching systems is taken.
Journal ArticleDOI

Memristive devices and systems

TL;DR: In this article, a broad generalization of memristors to an interesting class of nonlinear dynamical systems called memristive systems is introduced, which are unconventional in the sense that while they behave like resistive devices, they can be endowed with a rather exotic variety of dynamic characteristics.
Journal ArticleDOI

Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3

TL;DR: It is demonstrated that the switching behaviour is an intrinsic feature of naturally occurring dislocations in single crystals of a prototypical ternary oxide, SrTiO3, and to be related to the self-doping capability of the early transition metal oxides.
Journal ArticleDOI

A [2]Catenane-Based Solid State Electronically Reconfigurable Switch

TL;DR: In this paper, a solid state, electronically addressable, bistable [2]catenane-based molecular switching device was fabricated from a single monolayer of the [2]-Catenane, anchored with phospholipid counterions, and sandwiched between an n-type polycrystalline silicon bottom electrode and a metallic top electrode.
Related Papers (5)