scispace - formally typeset
Journal ArticleDOI

The physics of manganites: Structure and transport

Reads0
Chats0
TLDR
The fundamental physical properties of doped oxides and their underlying physics were known more than 40 years ago as mentioned in this paper, and the concept of double exchange in particular, and points out the missing elements that have led to a massive resurgence of interest in these and related materials.
Abstract
The fundamental physical properties of doped ${\mathrm{LaMnO}}_{3},$ generically termed ``manganites,'' and much of the underlying physics, were known more than 40 years ago. This article first reviews progress made at that time, the concept of double exchange in particular, and points out the missing elements that have led to a massive resurgence of interest in these and related materials. More recent research is then described, treating first the ground states that emerge as divalent atoms are substituted for trivalent La. A wide range of ground states appear, including ferromagnetic metals, orbital- and charge-ordered antiferromagnets, and more complex stripe and spin-glass states. Because of the interest in so-called colossal magnetoresistance that occurs in the ferromagnetic/metallic composition range, a section is devoted to reviewing the atypical properties of that phase. Next the high-temperature phase is examined, in particular, evidence for the formation of self-trapped small polarons and the importance of Jahn-Teller coupling in this process. The transitions between the high-temperature polaronic phase and the ferromagnetic and charge-ordered states are treated in a fourth section. In each section, the authors stress the competition among charge, spin, and lattice coupling and review the current state of theoretical understanding. They conclude with some comments on the impact that research on these materials has on our understanding of doped oxides and other strongly correlated electronic materials.

read more

Citations
More filters
Journal ArticleDOI

Complexity in Strongly Correlated Electronic Systems

TL;DR: The spontaneous emergence of electronic nanometer-scale structures in transition metal oxides, and the existence of many competing states, are properties often associated with complex matter where nonlinearities dominate, such as soft materials and biological systems.
Journal ArticleDOI

Critical phenomena and renormalization-group theory

TL;DR: In this paper, the critical behavior of spin systems at equilibrium is studied in three and two dimensions, and the results in three-dimensional space are presented in particular for the six-loop perturbative series for the β -functions.
Journal ArticleDOI

Critical features of colossal magnetoresistive manganites

TL;DR: In this paper, the phase separation phenomenon on various time-scales (from static to dynamic) and the enhanced phase fluctuation with anomalous reduction in the transition temperatures of the competing phases (and hence in the bicritical-point temperature).
Journal ArticleDOI

Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions

TL;DR: In this paper, the authors discuss the role of materials synthesis in influencing functional properties and discuss future research directions that may be worth consideration, concluding with a brief discussion on future directions that are worth consideration.
References
More filters
Book

Electronic processes in non-crystalline materials

TL;DR: The Fermi Glass and the Anderson Transition as discussed by the authorsermi glass and Anderson transition have been studied in the context of non-crystalline Semiconductors, such as tetrahedrally-bonded semiconductors.
BookDOI

Colossal magnetoresistance, charge ordering and related properties of manganese oxides

C. N. R. Rao, +1 more
TL;DR: A review of the topics of colossal magnetoresistance, charge ordering and related phenomena exhibited by oxides, and contributions covering the present status of the subject can be found in this paper,.
Related Papers (5)