scispace - formally typeset
Journal ArticleDOI

Thermal conductivity of Al2O3/water nanofluids

TLDR
In this paper, the authors measured the thermal conductivity of very narrow Al2O3 nanoparticles with the size of 5nm suspended in water in a temperature range between 26 and 55°C.
Abstract
A considerable number of studies can be found on the thermal conductivity of nanofluids in which Al2O3 nanoparticles are used as additives. In the present study, the aim is to measure the thermal conductivity of very narrow Al2O3 nanoparticles with the size of 5 nm suspended in water. The thermal conductivity of nanofluids with concentrations up to 5 % is measured in a temperature range between 26 and 55 °C. Using the experimental data, a correlation is presented as a function of the temperature and volume fraction of nanoparticles. Finally, a sensitivity analysis is performed to assess the sensitivity of thermal conductivity of nanofluids to increase the particle loading at different temperatures. The sensitivity analysis reveals that at a given concentration, the sensitivity of thermal conductivity to particle loading increases when the temperature increases.

read more

Citations
More filters
Journal ArticleDOI

Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid

TL;DR: In this article, the effect of nanoparticle volume fraction on thermal conductivity and dynamic viscosity of Ag-MgO/water hybrid nanofluid with the particle diameter of 40(mgO) and 25(Ag) nm was investigated.
Journal ArticleDOI

Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation☆

TL;DR: In this article, two new correlations for predicting the thermal conductivity of studied hybrid nanofluids, in terms of solid concentration and temperature, are proposed that use an artificial neural network (ANN) and are based on experimental data.
Journal ArticleDOI

A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids

TL;DR: In this paper, a review of recent advances in the measurement and modeling of thermophysical properties at the nanoscale (from the solid state to colloids) is presented, including thermal conductivity, dynamic viscosity, specific heat capacity, and density.
Journal ArticleDOI

Viscosity of nanofluids: A review of recent experimental studies

TL;DR: In this article, the authors made an attempt to cover the latest experimental studies performed on the viscosity of nanofluids and found that the real effects of volume fraction, temperature, particle size, and shape on the viscous properties of nanoparticles can be determined through experiments.
References
More filters
Journal ArticleDOI

Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles

TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Journal ArticleDOI

Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles

TL;DR: In this paper, a transient hot-wire method was used to measure the thermal conductivity of a small amount of nanoparticles and the experimental results showed that these nanoparticles have substantially higher thermal conductivities than the same liquids without nanoparticles.
Journal ArticleDOI

Temperature dependence of thermal conductivity enhancement for nanofluids

TL;DR: In this article, the authors investigated the increase of thermal conductivity with temperature for nano fluids with water as base fluid and particles of Al 2 O 3 or CuO as suspension material.
Related Papers (5)
Trending Questions (1)
What is value of Al2O3 thermal conductivity at liquid phase?

The thermal conductivity of Al2O3 nanoparticles in water was measured in the study, with values varying based on temperature and nanoparticle volume fraction, up to 5%.