scispace - formally typeset
Open AccessJournal Article

Topological Band Theory for Non-Hermitian Hamiltonians

TLDR
In this paper, the authors developed the topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex, and classified gapped bands in one and two dimensions by explicitly finding their topological invariants.
Abstract
We develop the topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex. After generalizing the notion of gapped band structures to the non-Hermitian case, we classify ``gapped'' bands in one and two dimensions by explicitly finding their topological invariants. We find nontrivial generalizations of the Chern number in two dimensions, and a new classification in one dimension, whose topology is determined by the energy dispersion rather than the energy eigenstates. We then study the bulk-edge correspondence and the topological phase transition in two dimensions. Different from the Hermitian case, the transition generically involves an extended intermediate phase with complex-energy band degeneracies at isolated ``exceptional points'' in momentum space. We also systematically classify all types of band degeneracies.

read more

Citations
More filters
Journal ArticleDOI

Topological Photonics

TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Journal ArticleDOI

Edge States and Topological Invariants of Non-Hermitian Systems.

TL;DR: This work obtains the phase diagram of the non-Hermitian Su-Schrieffer-Heeger model, whose topological zero modes are determined by theNon-Bloch winding number instead of the Bloch-Hamiltonian-based topological number.
Journal ArticleDOI

Exceptional points in optics and photonics.

TL;DR: The topic of exceptional points in photonics is reviewed and some of the possible exotic behavior that might be expected from engineering such systems are explored, as well as new angle of utilizing gain and loss as new degrees of freedom, in stark contrast with the traditional approach of avoiding these elements.
Journal ArticleDOI

Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems.

TL;DR: This work provides a comprehensive framework for generalized bulk-boundary correspondence and a quantized biorthogonal polarization that is formulated directly in systems with open boundaries, including exactly solvable non-Hermitian extensions of the Su-Schrieffer-Heeger model and Chern insulators.
References
More filters
Book

Perturbation theory for linear operators

Tosio Kato
TL;DR: The monograph by T Kato as discussed by the authors is an excellent reference work in the theory of linear operators in Banach and Hilbert spaces and is a thoroughly worthwhile reference work both for graduate students in functional analysis as well as for researchers in perturbation, spectral, and scattering theory.
Journal ArticleDOI

Quantal phase factors accompanying adiabatic changes

TL;DR: In this article, it was shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor and a general formula for γ(C) was derived in terms of the spectrum and eigen states of the Hamiltonian over a surface spanning C.
Journal ArticleDOI

Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry

TL;DR: The condition of self-adjointness as discussed by the authors ensures that the eigenvalues of a Hamiltonian are real and bounded below, replacing this condition by the weaker condition of $\mathrm{PT}$ symmetry, one obtains new infinite classes of complex Hamiltonians whose spectra are also real and positive.
Journal ArticleDOI

Z-2 Topological Order and the Quantum Spin Hall Effect

TL;DR: The Z2 order of the QSH phase is established in the two band model of graphene and a generalization of the formalism applicable to multiband and interacting systems is proposed.
Journal ArticleDOI

Quantized Hall conductance in a two-dimensional periodic potential

TL;DR: In this article, the Hall conductance of a two-dimensional electron gas has been studied in a uniform magnetic field and a periodic substrate potential, where the Kubo formula is written in a form that makes apparent the quantization when the Fermi energy lies in a gap.
Related Papers (5)