scispace - formally typeset
Journal ArticleDOI

Trichoderma species--opportunistic, avirulent plant symbionts.

TLDR
Root colonization by Trichoderma spp.
Abstract
Trichoderma spp. are free-living fungi that are common in soil and root ecosystems. Recent discoveries show that they are opportunistic, avirulent plant symbionts, as well as being parasites of other fungi. At least some strains establish robust and long-lasting colonizations of root surfaces and penetrate into the epidermis and a few cells below this level. They produce or release a variety of compounds that induce localized or systemic resistance responses, and this explains their lack of pathogenicity to plants. These root-microorganism associations cause substantial changes to the plant proteome and metabolism. Plants are protected from numerous classes of plant pathogen by responses that are similar to systemic acquired resistance and rhizobacteria-induced systemic resistance. Root colonization by Trichoderma spp. also frequently enhances root growth and development, crop productivity, resistance to abiotic stresses and the uptake and use of nutrients.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Bioactivity of endophytic Trichoderma fungal species from the plant family Cupressaceae

TL;DR: The above findings show for the first time the presence of T. atroviride and T. koningii as endophytic fungi in Cupressaceae plants and more importantly, the Trichoderma isolates demonstrate significant bioactivity that could be used in future for agrochemical/drug discovery and pathogen biocontrol.
Journal ArticleDOI

Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria

TL;DR: Compatibility between the combined Trichoderma applications and the bacterial strains was observed and these combinations significantly improved the control of R. necatrix during the in vitro experiments.
Journal ArticleDOI

In vitro biocontrol analysis of Alternaria alternata (Fr.) Keissler under different environmental conditions.

TL;DR: Biocontrol was governed by different mechanisms such as competition for space and nutrients, mycoparasitism, and possible antibiosis, and temperature and water activity significantly influenced fungal growth rate.
Journal ArticleDOI

How a Mycoparasite Employs G-Protein Signaling: Using the Example of Trichoderma

TL;DR: Components of the G-protein signaling machinery such as Gα subunits and G- protein-coupled receptors were recently shown to play crucial roles in Trichoderma mycoparasitism as they govern processes such as the production of extracellular cell wall lytic enzymes, the secretion of antifungal metabolites, and the formation of infection structures.
References
More filters
Journal ArticleDOI

Systemic resistance induced by rhizosphere bacteria

TL;DR: Rhizobacteria-mediated induced systemic resistance (ISR) is effective under field conditions and offers a natural mechanism for biological control of plant disease.
Journal ArticleDOI

Microbial interactions and biocontrol in the rhizosphere

TL;DR: Multiple microbial interactions involving bacteria and fungi in the rhizosphere are shown to provide enhanced biocontrol in many cases in comparison with biocOntrol agents used singly.
Journal ArticleDOI

Mechanisms Employed by Trichoderma Species in the Biological Control of Plant Diseases: The History and Evolution of Current Concepts.

TL;DR: Past research indicates that the mechanisms are many and varied, even within the genus Trichoderma, and in order to make the most effective use of biocontrol agents for the control of plant diseases, it must understand how the agents work and what their limitations are.
Journal ArticleDOI

Bacterial volatiles promote growth in Arabidopsis.

TL;DR: The demonstration that PGPR strains release different volatile blends and that plant growth is stimulated by differences in these volatile blends establishes an additional function for volatile organic compounds as signaling molecules mediating plant–microbe interactions.
Related Papers (5)