scispace - formally typeset
Open AccessJournal ArticleDOI

Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions

Reads0
Chats0
TLDR
It is demonstrated that, via controlled anion exchange reactions using a range of different halide precursors, this approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs.
Abstract
We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl– or I– ions and reinsertion of Br– ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles.

read more

Citations
More filters
Journal ArticleDOI

Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures

TL;DR: The confined electronic orbitals and related energy levels of individual semiconductor quantum dots have been measured by means of scanning tunneling microscopy and spectroscopy, and the results are compared with those on comparable solid-state ones.
Journal ArticleDOI

Starke Lumineszenz in Nanokristallen aus Caesiumbleihalogenid‐ Perowskit mit durchstimmbarer Zusammensetzung und Dicke mittels Ultraschalldispersion

TL;DR: In this article, the authors present an einfache, skalierbare, einstufige Synthese of kolloidalen Perowskit-Nanokristallen (NCs) aus CsPbX3 (X=Cl, Br and I) with durchstimmbarer Halogenidionenzusammensetzung and Dicke mittels Ultraschalldispersion der entsprechenden Eduktlosungen im Gegenwart von organischen Liganden and oh
Journal ArticleDOI

Improving the Quality and Luminescence Performance of All-Inorganic Perovskite Nanomaterials for Light-Emitting Devices by Surface Engineering.

TL;DR: The principles of surface ligands are reviewed, and various surface treatment methods used in CsPbX3 NCs as well as quantum-dot light-emitting diodes are presented.
Journal ArticleDOI

Multi-wavelength tailoring of a ZnGa2O4 nanosheet phosphor via defect engineering.

TL;DR: Using ZnGa2O4 nanosheets as a target phosphor, it is demonstrated how to artificially control the luminescence wavelength centers and their emission intensities to simultaneously emit ultraviolet/blue, green and red light via a feasible defect engineering strategy.
References
More filters
Journal ArticleDOI

Hard and soft acids and bases

TL;DR: In this paper, the rate data for the generalized nucleophilic displacement reaction were reviewed, and the authors presented a method to estimate the rate of the generalized displacement reaction in terms of the number of nucleophiles.
Journal ArticleDOI

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut

TL;DR: The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Journal ArticleDOI

High-performance photovoltaic perovskite layers fabricated through intramolecular exchange

TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Journal ArticleDOI

Compositional engineering of perovskite materials for high-performance solar cells

TL;DR: This work combines the promising—but relatively unstable formamidinium lead iodide with FAPbI3 with methylammonium lead bromide as the light-harvesting unit in a bilayer solar-cell architecture and improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination.
Journal ArticleDOI

Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells

TL;DR: This paper demonstrates highly efficient solar cells exhibiting 12.3% in a power conversion efficiency of under standard AM 1.5, for the most efficient device, as a result of tunable composition for the light harvester in conjunction with a mesoporous TiO2 film and a hole conducting polymer.
Related Papers (5)