scispace - formally typeset
Open AccessJournal ArticleDOI

Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions

TLDR
The maximum thermal conductivity enhancement and minimum viscosity increase are obtained using a lengthy sonication, which may have implications on application.
Abstract
The preparation of nanofluids is very important to their thermophysical properties. Nanofluids with the same nanoparticles and base fluids can behave differently due to different nanofluid preparation methods. The agglomerate sizes in nanofluids can significantly impact the thermal conductivity and viscosity of nanofluids and lead to a different heat transfer performance. Ultrasonication is a common way to break up agglomerates and promote dispersion of nanoparticles into base fluids. However, research reports of sonication effects on nanofluid properties are limited in the open literature. In this work, sonication effects on thermal conductivity and viscosity of carbon nanotubes (0.5 wt%) in an ethylene glycol-based nanofluid are investigated. The corresponding effects on the agglomerate sizes and the carbon nanotube lengths are observed. It is found that with an increased sonication time/energy, the thermal conductivity of the nanofluids increases nonlinearly, with the maximum enhancement of 23% at sonication time of 1,355 min. However, the viscosity of nanofluids increases to the maximum at sonication time of 40 min, then decreases, finally approaching the viscosity of the pure base fluid at a sonication time of 1,355 min. It is also observed that the sonication process not only reduces the agglomerate sizes but also decreases the length of carbon nanotubes. Over the current experimental range, the reduction in agglomerate size is more significant than the reduction of the carbon nanotube length. Hence, the maximum thermal conductivity enhancement and minimum viscosity increase are obtained using a lengthy sonication, which may have implications on application.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress

TL;DR: In this paper, the authors provide an overview of the latest studies about the use of nanoparticles to enhance oil recovery and paves the way for researchers who are interested in the integration of these progresses.
Journal ArticleDOI

A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids

TL;DR: In this paper, a review of recent advances in the measurement and modeling of thermophysical properties at the nanoscale (from the solid state to colloids) is presented, including thermal conductivity, dynamic viscosity, specific heat capacity, and density.
Journal ArticleDOI

A state of the art review on viscosity of nanofluids

TL;DR: In this paper, a comprehensive review of research and development on rheological characteristics of nanofluids for their advanced heat transfer applications is performed and reported in this paper, which identifies the research anomaly and importance on this topic besides analysing rheology of nanophluids.
Journal ArticleDOI

Preparation and evaluation of stable nanofluids for heat transfer application: A review

TL;DR: In this paper, the authors reviewed the work carried out by various researchers in the last two decades and summarized the preparation and analytical techniques used for preparation of stable nanofluids.
Journal ArticleDOI

Rheological behaviour of nanofluids: A review

TL;DR: In this article, the influence of particle shape and shear rate range on rheological behavior of nanofluids has been discussed and other factors such as nanoparticle type, volumetric concentration in different base fluids, addition of surfactant and externally applied magnetic field have been investigated.
References
More filters
Book

A Treatise on Electricity and Magnetism

TL;DR: The most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831-1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field as discussed by the authors.
Journal ArticleDOI

Investigation on Convective Heat Transfer and Flow Features of Nanofluids

TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Journal ArticleDOI

Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles

TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Journal ArticleDOI

Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Related Papers (5)