scispace - formally typeset
Search or ask a question

Showing papers in "Nanoscale Research Letters in 2012"


Journal ArticleDOI
TL;DR: EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europiumcontent in the reaction solution, and crystallinity and crystallite size of the titania particles decreased gradually.
Abstract: Uniform, spherical-shaped TiO2:Eu nanoparticles with different doping concentrations have been synthesized through controlled hydrolysis of titanium tetrabutoxide under appropriate pH and temperature in the presence of EuCl3·6H2O. Through air annealing at 500°C for 2 h, the amorphous, as-grown nanoparticles could be converted to a pure anatase phase. The morphology, structural, and optical properties of the annealed nanostructures were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy [EDS], and UV-Visible diffuse reflectance spectroscopy techniques. Optoelectronic behaviors of the nanostructures were studied using micro-Raman and photoluminescence [PL] spectroscopies at room temperature. EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europium content in the reaction solution. With the increasing dopant concentration, crystallinity and crystallite size of the titania particles decreased gradually. Incorporation of europium in the titania particles induced a structural deformation and a blueshift of their absorption edge. While the room-temperature PL emission of the as-grown samples is dominated by the 5D0 - 7Fj transition of Eu+3 ions, the emission intensity reduced drastically after thermal annealing due to outwards segregation of dopant ions.

2,378 citations


Journal ArticleDOI
TL;DR: The focus on particle formation mechanism and recent modifications made on the preparation of monodisperse samples of relatively large quantities not only with similar physical features, but also with similar crystallochemical characteristics are addressed.
Abstract: Finally, we have addressed some relevant findings on the importance of having well-defined synthetic strategies developed for the generation of MNPs, with a focus on particle formation mechanism and recent modifications made on the preparation of monodisperse samples of relatively large quantities not only with similar physical features, but also with similar crystallochemical characteristics. Then, different methodologies for the functionalization of the prepared MNPs together with the characterization techniques are explained. Theorical views on the magnetism of nanoparticles are considered.

933 citations


Journal ArticleDOI
TL;DR: In this paper, the near-band-edge emissions of neutral acceptor-bound excitons (labeled as L1) were systematically investigated as a function of temperature and alloy composition.
Abstract: In this paper, we report a systematic investigation of band-edge photoluminescence for Cd1-xMnxTe crystals grown by the vertical Bridgman method. The near-band-edge emissions of neutral acceptor-bound excitons (labeled as L1) were systematically investigated as a function of temperature and of alloy composition. The parameters that describe the temperature variation of the energy were evaluated by the semiempirical Varshni relation. From the temperature dependence of the full width at half maximum of the L1 emission line, the broadening factors Γ(T) were determined from the fit to the data. The activation energies of thermal quenching were obtained for the L1 peak from the temperature dependence of the bound exciton peaks and were found to decrease with increasing Mn concentration.

607 citations


Journal ArticleDOI
TL;DR: QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products.
Abstract: This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials.

450 citations


Journal ArticleDOI
TL;DR: The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.
Abstract: MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2·0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m2/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.

427 citations


Journal ArticleDOI
TL;DR: It is found that the concentration and the quantity of precursors are the critical factors for obtaining the desired one-dimensional morphology of copper oxide nanowires.
Abstract: We report a successful synthesis of copper oxide nanowires with an average diameter of 90 nm and lengths of several micrometers by using a simple and inexpensive wet chemical method. The CuO nanowires prepared via this method are advantageous for industrial applications which require mass production and low thermal budget technique. It is found that the concentration and the quantity of precursors are the critical factors for obtaining the desired one-dimensional morphology. Field emission scanning electron microscopy images indicate the influence of thioglycerol on the dispersity of the prepared CuO nanowires possibly due to the stabilization effect of the surface caused by the organic molecule thioglycerol. The Fourier transform infrared spectrum analysis, energy dispersive X-ray analysis, X-ray diffraction analysis, and X-ray photoemission spectrum analysis confirm clearly the formation of a pure phase high-quality CuO with monoclinic crystal structure.

347 citations


Journal ArticleDOI
TL;DR: Zinc oxide is synthesised at low temperature (80°C) in nanosheet geometry using a substrate-free, single-step, wet-chemical method and is found to act as a blue-white fluorophore and has potential for use as ablue-white fluorescent coating in conjunction with ultraviolet emitting LEDs.
Abstract: Zinc oxide is synthesised at low temperature (80°C) in nanosheet geometry using a substrate-free, single-step, wet-chemical method and is found to act as a blue-white fluorophore. Investigation by atomic force microscopy, electron microscopy, and X-ray diffraction confirms zinc oxide material of nanosheet morphology where the individual nanosheets are polycrystalline in nature with the crystalline structure being of wurtzite character. Raman spectroscopy indicates the presence of various defects, while photoluminescence measurements show intense green (centre wavelength approximately 515 nm) blue (approximately 450 nm), and less dominant red (approximately 640 nm) emissions due to a variety of vacancy and interstitial defects, mostly associated with surfaces or grain boundaries. The resulting colour coordinate on the CIE-1931 standard is (0.23, 0.33), demonstrating potential for use as a blue-white fluorescent coating in conjunction with ultraviolet emitting LEDs. Although the defects are often treated as draw-backs of ZnO, here we demonstrate useful broadband visible fluorescence properties in as-prepared ZnO.

286 citations


Journal ArticleDOI
TL;DR: The structural and microstructural properties as a function of Al and Ga concentrations through X-ray diffraction and scanning electron microscopy analysis and the optical bandgap and photoluminescence were estimated.
Abstract: We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol–gel spin-coating process. As a starting material, AlCl3⋅6H2O, Ga(NO3)2, and Zn(CH3COO)2⋅2H2O were used. A lowest sheet resistance of 3.3 × 103 Ω/□ was obtained for the GZO thin film doped with 1.5 mol% of Ga after post-annealing at 650°C for 60 min in air. All the films showed more than 85% transparency in the visible region. We have studied the structural and microstructural properties as a function of Al and Ga concentrations through X-ray diffraction and scanning electron microscopy analysis. In addition, the optical bandgap and photoluminescence were estimated.

259 citations


Journal ArticleDOI
TL;DR: A new nanocrystalline sensitizer with the chemical formula (CH3CH2NH3)PbI3 is synthesized by reacting ethylammonium iodide with lead iodide, and its crystal structure and photovoltaic property are investigated.
Abstract: A new nanocrystalline sensitizer with the chemical formula (CH3CH2NH3)PbI3 is synthesized by reacting ethylammonium iodide with lead iodide, and its crystal structure and photovoltaic property are investigated. X-ray diffraction analysis confirms orthorhombic crystal phase with a = 8.7419(2) A, b = 8.14745(10) A, and c = 30.3096(6) A, which can be described as 2 H perovskite structure. Ultraviolet photoelectron spectroscopy and UV-visible spectroscopy determine the valence band position at 5.6 eV versus vacuum and the optical bandgap of ca. 2.2 eV. A spin coating of the CH3CH2NH3I and PbI2 mixed solution on a TiO2 film yields ca. 1.8-nm-diameter (CH3CH2NH3)PbI3 dots on the TiO2 surface. The (CH3CH2NH3)PbI3-sensitized solar cell with iodide-based redox electrolyte demonstrates the conversion efficiency of 2.4% under AM 1.5 G one sun (100 mW/cm2) illumination.

245 citations


Journal ArticleDOI
Saad Tanvir1, Li Qiao1
TL;DR: The results show that surface tension increases both with particle concentration and particle size for all cases, and the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension.
Abstract: The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension.

240 citations


Journal ArticleDOI
TL;DR: This work studies the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature.
Abstract: In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles.

Journal ArticleDOI
TL;DR: The maximum thermal conductivity enhancement and minimum viscosity increase are obtained using a lengthy sonication, which may have implications on application.
Abstract: The preparation of nanofluids is very important to their thermophysical properties. Nanofluids with the same nanoparticles and base fluids can behave differently due to different nanofluid preparation methods. The agglomerate sizes in nanofluids can significantly impact the thermal conductivity and viscosity of nanofluids and lead to a different heat transfer performance. Ultrasonication is a common way to break up agglomerates and promote dispersion of nanoparticles into base fluids. However, research reports of sonication effects on nanofluid properties are limited in the open literature. In this work, sonication effects on thermal conductivity and viscosity of carbon nanotubes (0.5 wt%) in an ethylene glycol-based nanofluid are investigated. The corresponding effects on the agglomerate sizes and the carbon nanotube lengths are observed. It is found that with an increased sonication time/energy, the thermal conductivity of the nanofluids increases nonlinearly, with the maximum enhancement of 23% at sonication time of 1,355 min. However, the viscosity of nanofluids increases to the maximum at sonication time of 40 min, then decreases, finally approaching the viscosity of the pure base fluid at a sonication time of 1,355 min. It is also observed that the sonication process not only reduces the agglomerate sizes but also decreases the length of carbon nanotubes. Over the current experimental range, the reduction in agglomerate size is more significant than the reduction of the carbon nanotube length. Hence, the maximum thermal conductivity enhancement and minimum viscosity increase are obtained using a lengthy sonication, which may have implications on application.

Journal ArticleDOI
TL;DR: The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically and expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters.
Abstract: The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt.

Journal ArticleDOI
TL;DR: The results demonstrated that ZnO NPs lead to cellular morphological modifications, mitochondrial dysfunction, and cause reduction of SOD, depletion of GSH, and oxidative DNA damage, which suggested that oxidative stress and lipid peroxidation played an important role in ZnNPs-elicited cell membrane disruption,DNA damage, and subsequent cell death.
Abstract: Traces of zinc oxide nanoparticles (ZnO NPs) used may be found in the liver and kidney. The aim of this study is to determine the optimal viability assay for using with ZnO NPs and to assess their toxicity to human hepatocyte (L02) and human embryonic kidney (HEK293) cells. Cellular morphology, mitochondrial function (MTT assay), and oxidative stress markers (malondialdehyde, glutathione (GSH) and superoxide dismutase (SOD)) were assessed under control and exposed to ZnO NPs conditions for 24 h. The results demonstrated that ZnO NPs lead to cellular morphological modifications, mitochondrial dysfunction, and cause reduction of SOD, depletion of GSH, and oxidative DNA damage. The exact mechanism behind ZnO NPs toxicity suggested that oxidative stress and lipid peroxidation played an important role in ZnO NPs-elicited cell membrane disruption, DNA damage, and subsequent cell death. Our preliminary data suggested that oxidative stress might contribute to ZnO NPs cytotoxicity.

Journal ArticleDOI
YaoMing Hao1, Shiyun Lou1, Shaomin Zhou1, RuiJian Yuan1, Gong-Yu Zhu1, Ning Li1 
TL;DR: In this paper, a series of manganese-doped hierarchical microspheres (HMSs) are prepared by hydrothermal method only using zinc acetate precursors and ethylene glycol as solvent, and X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase.
Abstract: In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies.

Journal ArticleDOI
TL;DR: MoS2 sheets show high elasticity and an extremely high Young's modulus, which make them a potential alternative to graphene in applications requiring flexible semiconductor materials.
Abstract: We fabricate freely suspended nanosheets of molybdenum disulphide (MoS2) which are characterized by quantitative optical microscopy and high-resolution friction force microscopy We study the elastic deformation of freely suspended nanosheets of MoS2 using an atomic force microscope The Young’s modulus and the initial pretension of the nanosheets are determined by performing a nanoscopic version of a bending test experiment MoS2 sheets show high elasticity and an extremely high Young’s modulus (030 TPa, 50% larger than steel) These results make them a potential alternative to graphene in applications requiring flexible semiconductor materials PACS, 7361Le, other inorganic semiconductors, 6865Ac, multilayers, 6220de, elastic moduli, 8140Jj, elasticity and anelasticity, stress-strain relations

Journal ArticleDOI
TL;DR: In this article, the effect of water adsorption on the electrical properties of graphene oxide (GO) films using the direct current measurement and alternating current (AC) complex impedance spectroscopy was investigated.
Abstract: We investigate the effect of water adsorption on the electrical properties of graphene oxide (GO) films using the direct current (DC) measurement and alternating current (AC) complex impedance spectroscopy. GO suspension synthesized by a modified Hummer's method is deposited on Au interdigitated electrodes. The strong electrical interaction of water molecules with GO films was observed through electrical characterizations. The DC measurement results show that the electrical properties of GO films are humidity- and applied voltage amplitude-dependent. The AC complex impedance spectroscopy method is used to analyze the mechanism of electrical interaction between water molecules and GO films in detail. At low humidity, GO films exhibit poor conductivity and can be seen as an insulator. However, at high humidity, the conductivity of GO films increases due to the enhancement of ion conduction. Our systematic research on this effect provides the fundamental supports for the development of graphene devices originating from solution-processed graphene oxide.

Journal ArticleDOI
TL;DR: Based on first-principles calculations, it is found that the fully saturated silicene exhibits nonmagnetic semiconducting behavior, while half-saturation on only one side with hydrogen or bromine results in the localized and unpaired electrons of the unsaturated Si atoms, showing ferromagnetic semiconducted or half-metallic properties, respectively.
Abstract: Based on first-principles calculations, we study the structural, electronic, and magnetic properties of two-dimensional silicene saturated with hydrogen and bromine atoms. It is found that the fully saturated silicene exhibits nonmagnetic semiconducting behavior, while half-saturation on only one side with hydrogen or bromine results in the localized and unpaired electrons of the unsaturated Si atoms, showing ferromagnetic semiconducting or half-metallic properties, respectively. Total energy calculations show that the half-hydrogenated silicene exhibits a ferromagnetic order, while the half-brominated one exhibits an antiferromagnetic behavior.

Journal ArticleDOI
TL;DR: The results indicate that oxygen vacancies could be involved in the ferromagnetic exchange, and the possible mechanism of formation was discussed based on the experimental results.
Abstract: Ferromagnetism was observed at room temperature in monodisperse CeO2 nanospheres synthesized by hydrothermal treatment of Ce(NO3)3·6H2O using polyvinylpyrrolidone as a surfactant. The structure and morphology of the products were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and field-emission scanning electron microscopy (FE-SEM). The optical properties of the nanospheres were determined using UV and visible spectroscopy and photoluminescence (PL). The valence states of Ce ions were also determined using X-ray absorption near edge spectroscopy. The XRD results indicated that the synthesized samples had a cubic structure with a crystallite size in the range of approximately 9 to 19 nm. FE-SEM micrographs showed that the samples had a spherical morphology with a particle size in the range of approximately 100 to 250 nm. The samples also showed a strong UV absorption and room temperature PL. The emission might be due to charge transfer transitions from the 4f band to the valence band of the oxide. The magnetic properties of the samples were studied using a vibrating sample magnetometer. The samples exhibited room temperature ferromagnetism with a small magnetization of approximately 0.0026 to 0.016 emu/g at 10 kOe. Our results indicate that oxygen vacancies could be involved in the ferromagnetic exchange, and the possible mechanism of formation was discussed based on the experimental results.

Journal ArticleDOI
TL;DR: The Fourier transform infrared and thermogravimetry analysis results showed that the graphene oxide for the AgNP-graphene oxide (AgGO) sample was partially reduced during the in situ synthesis of silver nanoparticles.
Abstract: Silver nanoparticles and silver-graphene oxide nanocomposites were fabricated using a rapid and green microwave irradiation synthesis method. Silver nanoparticles with narrow size distribution were formed under microwave irradiation for both samples. The silver nanoparticles were distributed randomly on the surface of graphene oxide. The Fourier transform infrared and thermogravimetry analysis results showed that the graphene oxide for the AgNP-graphene oxide (AgGO) sample was partially reduced during the in situ synthesis of silver nanoparticles. Both silver nanoparticles and AgGO nanocomposites exhibited stronger antibacterial properties against Gram-negative bacteria (Salmonella typhi and Escherichia coli) than against Gram-positive bacteria (Staphyloccocus aureus and Staphyloccocus epidermidis). The AgGO nanocomposites consisting of approximately 40 wt.% silver can achieve antibacterial performance comparable to that of neat silver nanoparticles.

Journal ArticleDOI
TL;DR: Under the irradiation of a 532-nm laser, the cellular AlPcS-QD conjugates can destroy most cancer cells via FRET-mediated PDT, showing the potential of this new strategy for PDT.
Abstract: Sulfonated aluminum phthalocyanines (AlPcSs), commonly used photosensitizers for photodynamic therapy of cancers (PDT), were conjugated with amine-dihydrolipoic acid-coated quantum dots (QDs) by electrostatic binding, achieving 70 AlPcSs per QD. The AlPcS-QD conjugates can utilize the intense light absorptions of conjugated QDs to indirectly excite AlPcSs producing singlet oxygen via fluorescence resonance energy transfer (FRET), demonstrating a new excitation model for PDT. The AlPcS-QD conjugates easily penetrated into human nasopharyngeal carcinoma cells and carried out the FRET in cells, with efficiency around 80%. Under the irradiation of a 532-nm laser, which is at the absorption region of QDs but not fit for the absorption of AlPcSs, the cellular AlPcS-QD conjugates can destroy most cancer cells via FRET-mediated PDT, showing the potential of this new strategy for PDT.

Journal ArticleDOI
TL;DR: The demonstrated composites made of polymethyl methacrylate and BN nanosheets revealed excellent thermal stability, 2.5-fold improved dielectric constant, and 17-fold enhanced thermal conductivity, indicating multifunctional practical applications of such polymeric composites in many specific fields, such as thermoconductive insulating long-lifetime packaging for electrical circuits.
Abstract: High-throughput few-layered BN nanosheets have been synthesized through a facile chemical blowing route. They possess large lateral dimensions and high surface area, which are beneficial to fabricate effectively reinforced polymeric composites. The demonstrated composites made of polymethyl methacrylate and BN nanosheets revealed excellent thermal stability, 2.5-fold improved dielectric constant, and 17-fold enhanced thermal conductivity. The results indicate multifunctional practical applications of such polymeric composites in many specific fields, such as thermoconductive insulating long-lifetime packaging for electrical circuits.

Journal ArticleDOI
TL;DR: It is demonstrated that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of par Affin.
Abstract: In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.

Journal ArticleDOI
TL;DR: The composite SF/CS NFs will be suitable for bone tissue engineering applications by choosing a suitable blend composition and each component in the composite NF shows distinct effect on cell behavior.
Abstract: In this study, we have successfully fabricated electrospun bead-free silk fibroin [SF]/chitosan [CS] composite nanofibers [NFs] covering the whole range of CS content (0%, 25%, 50%, 75%, and 100%). SF/CS spinning solutions were prepared in a mixed solvent system of trifluoroacetic acid [TFA] and dichloromethane. The morphology of the NFs was observed by scanning electron microscope, and the average fiber diameter ranges from 215 to 478 nm. Confocal laser scanning microscopy confirms the uniform distribution of SF and CS within the composite NFs. To increase biocompatibility and preserve nanostructure when seeded with cells in culture medium, NFs were treated with an ethanol/ammonia aqueous solution to remove residual TFA and to change SF protein conformation. After the chemical treatment, SF/CS NFs could maintain the original structure for up to 54 days in culture medium. Properties of pristine and chemically treated SF/CS NFs were investigated by Fourier transform infrared spectroscopy [FT-IR], X-ray diffraction [XRD], and thermogravimetry/differential scanning calorimetry [TG/DSC]. Shift of absorption peaks in FT-IR spectra confirms the conformation change of SF from random coil to β-sheet by the action of ethanol, which is also consistent with the SF crystalline diffraction patterns measured by XRD. From TG/DSC analysis, the decomposition temperature peaks due to salt formation from TFA and protonated amines disappeared after chemical treatment, indicating complete removal of TFA by binding with ammonium ions during the treatment. This was also confirmed with the disappearance of F1s peak in X-ray photoelectron spectroscopy spectra and disappearance of TFA salt peaks in FT-IR spectra. The composite NFs could support the growth and osteogenic differentiation of human fetal osteoblastic [hFOB] cells, but each component in the composite NF shows distinct effect on cell behavior. SF promotes hFOB proliferation while CS enhances hFOB differentiation. The composite SF/CS NFs will be suitable for bone tissue engineering applications by choosing a suitable blend composition. PACS: 87.85.jf; 87.85.Rs; 68.37.Hk.

Journal ArticleDOI
TL;DR: The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume.
Abstract: Ferrite nanoparticles of basic composition Ni0.7-xZn x Cu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction [XRD], scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy [FT-IR]. XRD analysis of the powder samples sintered at 600°C for 4 h showed the cubic spinel structure for ferrites with a narrow size distribution from 28 to 32 nm. FT-IR showed two absorption bands (v1 and v2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. The effect of Zn doping on the electrical properties was studied using dielectric and impedance spectroscopy at room temperature. The dielectric parameters (e', e″, tanδ, and σac) show their maximum value for 10% Zn doping. The dielectric constant and loss tangent decrease with increasing frequency of the applied field. The results are explained in the light of dielectric polarization which is similar to the conduction phenomenon. The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. PACS: 75.50.Gg; 78.20; 77.22.Gm.

Journal ArticleDOI
TL;DR: The preparation of highly stable graphene (GE)-based nanofluids with ionic liquid as base fluids without any surfactant and the subsequent investigations on their thermal conductivity, specific heat, and viscosity show that the Ionanofluid is an ideal fluid for heat transfer and thermal storage.
Abstract: We report for the first time the preparation of highly stable graphene (GE)-based nanofluids with ionic liquid as base fluids (ionic liquid-based nanofluids (Ionanofluids)) without any surfactant and the subsequent investigations on their thermal conductivity, specific heat, and viscosity. The microstructure of the GE and MWCNTs are observed by transmission electron microscope. Thermal conductivity (TC), specific heat, and viscosity of these Ionanofluids were measured for different weight fractions and at varying temperatures, demonstrating that the Ionanofluids exhibit considerably higher TC and lower viscosity than that of their base fluids without significant specific heat decrease. An enhancement in TC by about 15.5% and 18.6% has been achieved at 25 °C and 65 °C respectively for the GE-based nanofluid at mass fraction of as low as 0.06%, which is larger than that of the MWCNT-dispersed nanofluid at the same loading. When the temperature rises, the TC and specific heat of the Ionanofluid increase clearly, while the viscosity decreases sharply. Moreover, the viscosity of the prepared Ionanofluids is lower than that of the base fluid. All these advantages of this new kind of Ionanofluid make it an ideal fluid for heat transfer and thermal storage.

Journal ArticleDOI
TL;DR: A convenient and rapid approach that could selectively detect bacteria without specialized instrumentation and pretreatment steps such as cell lysis is developed and has a great potential application in rapid detection of bacteria in the near future.
Abstract: Herein we reported the development of aptamer-based biosensors (aptasensors) based on label-free aptamers and gold nanoparticles (AuNPs) for detection of Escherichia coli (E. coli) O157:H7 and Salmonella typhimurium. Target bacteria binding aptamers are adsorbed on the surface of unmodified AuNPs to capture target bacteria, and the detection was accomplished by target bacteria-induced aggregation of the aptasensor which is associated as red-to-purple color change upon high-salt conditions. By employing anti-E. coli O157:H7 aptamer and anti-S. typhimurium aptamer, we developed a convenient and rapid approach that could selectively detect bacteria without specialized instrumentation and pretreatment steps such as cell lysis. The aptasensor could detect as low as 105colony-forming units (CFU)/ml target bacteria within 20 min or less and its specificity was 100%. This novel method has a great potential application in rapid detection of bacteria in the near future.

Journal ArticleDOI
TL;DR: Using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.
Abstract: Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy. The purpose of this study is to combine the unique properties of nanoparticles with the antimicrobial activity of the Rosmarinus officinalis essential oil in order to obtain a nanobiosystem that could be pelliculised on the surface of catheter pieces, in order to obtain an improved resistance to microbial colonization and biofilm development by Candida albicans and C. tropicalis clinical strains. The R. officinalis essential oils were extracted in a Neo-Clevenger type apparatus, and its chemical composition was settled by GC-MS analysis. Functionalized magnetite nanoparticles of up to 20 nm size had been synthesized by precipitation method adapted for microwave conditions, with oleic acid as surfactant. The catheter pieces were coated with suspended core/shell nanoparticles (Fe3O4/oleic acid:CHCl3), by applying a magnetic field on nanofluid, while the CHCl3 diluted essential oil was applied by adsorption in a secondary covering treatment. The fungal adherence ability was investigated in six multiwell plates, in which there have been placed catheters pieces with and without hybrid nanoparticles/essential oil nanobiosystem pellicle, by using culture-based methods and confocal laser scanning microscopy (CLSM). The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination. Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

Journal ArticleDOI
TL;DR: The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii.
Abstract: Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10-xAgx(PO4)6(OH)2, xAg=0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a=b=9.435 A, c=6.876 A for xAg=0.05, a=b=9.443 A, c=6.875 A for xAg=0.2, and a=b=9.445 A, c=6.877 A for xAg=0.3 are in good agreement with the standard of a=b=9.418 A, c=6.884 A (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples (xAg=0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of xAg in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth (P. stuartii).

Journal ArticleDOI
TL;DR: A comprehensive multi-scale three-dimensional (3D) resistor network numerical model to predict the piezoresistivity behavior of a nanocomposite material composed of an insulating polymer matrix and conductive carbon nanotubes (CNTs).
Abstract: In this work, we propose a comprehensive multi-scale three-dimensional (3D) resistor network numerical model to predict the piezoresistivity behavior of a nanocomposite material composed of an insulating polymer matrix and conductive carbon nanotubes (CNTs). This material is expected to be used as highly sensitive resistance-type strain sensors due to its high piezoresistivity defined as the resistance change ratio divided by the mechanical strain. In this multi-scale 3D numerical model, three main working mechanisms, which are well known to induce the piezoresistivity of strain sensors fabricated from nanocomposites, are for the first time considered systematically. They are (a) the change of the internal conductive network formed by the CNTs, (b) the tunneling effect among neighboring CNTs, and (c) the CNTs’ piezoresistivity. Comparisons between the present numerical results and our previous experimental ones were also performed to validate the present numerical model. The influence of the CNTs’ piezoresistivity on the total piezoresistivity of nanocomposite strain sensors is explored in detail and further compared with that of the other two mechanisms. It is found that the first two working mechanisms (i.e., the change of the internal conductive network and the tunneling effect) play a major role on the piezoresistivity of the nanocomposite strain sensors, whereas the contribution from the CNTs’ piezoresistivity is quite small. The present numerical results can provide valuable information for designing highly sensitive resistance-type strain sensors made from various nanocomposites composed of an insulating polymer matrix and conductive nanofillers.