scispace - formally typeset
Journal ArticleDOI

Uncoupling the size and support effects of Ni catalysts for dry reforming of methane

TLDR
In this paper, a unique Ni-based catalyst in which the Ni nanoparticle size and support can be varied independently was devised for dry reforming of methane (DRM) at 800°C without a significant change in the Ni size, and overlayers of various metal oxides, including SiO 2, Al 2 O 3, MgO, ZrO 2, TiO 2.
Abstract
The dry reforming of methane (DRM; CH 4  + CO 2 ↔  2H 2  + 2CO) can be a good way to utilize greenhouse gases for the production of valuable syn-gas. Ni-based catalysts have been used for this reaction; however, the Ni size effect and support effect were highly coupled and therefore could not be observed separately. Here, a unique catalyst in which the Ni nanoparticle size and support can be varied independently was devised. Highly uniform Ni nanoparticles with sizes of 2.6, 5.2, 9.0, and 17.3 nm were tested for DRM at 800 °C without a significant change in the Ni size, and overlayers of various metal oxides, including SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , were tested with the 5.2 nm of Ni nanoparticles. The dependence of the CH 4 or CO 2 turnover frequency on the Ni size and support was evaluated separately. The 2.6 nm Ni nanoparticles showed 4.1 times higher methane turnover frequency than those with a size of 17.3 nm. When various metal oxide overlayers were tested with the same 5.2 nm Ni, Al 2 O 3 exhibited 4.3 times higher methane turnover frequency than SiO 2 . The independent observation of the effects of the Ni nanoparticle size and support will provide valuable guidelines for designing effective methane dry reforming catalysts.

read more

Citations
More filters
Journal ArticleDOI

Honeycomb monolithic design to enhance the performance of Ni-based catalysts for dry reforming of methane

TL;DR: In this paper, Ni catalysts were used for dry reforming of methane at 700−900 °C, using a CH4:CO2 1:1 feedstock and exploring high Weight Hourly Space Velocity (115−346 L g−1 h−1).
Journal ArticleDOI

Synergy of macro-meso bimodal pore and Ni-Co alloy for enhanced stability in dry reforming of methane

TL;DR: In this paper, a bimodal pore structure Ni-Co catalyst was applied for dry reforming of methane (DRM) to improve the catalytic performance and stability of the catalyst.
Journal ArticleDOI

Green synthesis of highly dispersed Ni/SiO2 catalysts using natural biomass of sesbania powder

TL;DR: In this paper, a green and facile synthesis of highly dispersed supported nanohybridges using natural biomass has been reported, which has aroused great attention. But it is not suitable for indoor applications.
Journal ArticleDOI

A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction

TL;DR: In this article , different families of materials are explored and discussed, ranging from metal-supported catalysts, to layered materials, to organic frameworks, for the dry reforming of methane (DRM) reaction.
References
More filters
Journal ArticleDOI

Controlled growth of monodisperse silica spheres in the micron size range

TL;DR: In this article, a system of chemical reactions has been developed which permits the controlled growth of spherical silica particles of uniform size by means of hydrolysis of alkyl silicates and subsequent condensation of silicic acid in alcoholic solutions.
Journal ArticleDOI

Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering.

TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Journal ArticleDOI

The Fischer–Tropsch process: 1950–2000

TL;DR: In this article, the Fischer-Tropsch (FT) reaction is used to produce purified syngas and its composition should match the overall usage ratio of the FT reactions, which depends on the product selectivity.
Journal ArticleDOI

A review of dry (CO2) reforming of methane over noble metal catalysts

TL;DR: Dry (CO2) reforming of methane literature for catalysts based on Rh, Ru, Pt, and Pd metals is reviewed, including the effect of these noble metals on the kinetics, mechanism and deactivation of these catalysts.
Related Papers (5)