scispace - formally typeset
Journal ArticleDOI

Uncoupling the size and support effects of Ni catalysts for dry reforming of methane

TLDR
In this paper, a unique Ni-based catalyst in which the Ni nanoparticle size and support can be varied independently was devised for dry reforming of methane (DRM) at 800°C without a significant change in the Ni size, and overlayers of various metal oxides, including SiO 2, Al 2 O 3, MgO, ZrO 2, TiO 2.
Abstract
The dry reforming of methane (DRM; CH 4  + CO 2 ↔  2H 2  + 2CO) can be a good way to utilize greenhouse gases for the production of valuable syn-gas. Ni-based catalysts have been used for this reaction; however, the Ni size effect and support effect were highly coupled and therefore could not be observed separately. Here, a unique catalyst in which the Ni nanoparticle size and support can be varied independently was devised. Highly uniform Ni nanoparticles with sizes of 2.6, 5.2, 9.0, and 17.3 nm were tested for DRM at 800 °C without a significant change in the Ni size, and overlayers of various metal oxides, including SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , were tested with the 5.2 nm of Ni nanoparticles. The dependence of the CH 4 or CO 2 turnover frequency on the Ni size and support was evaluated separately. The 2.6 nm Ni nanoparticles showed 4.1 times higher methane turnover frequency than those with a size of 17.3 nm. When various metal oxide overlayers were tested with the same 5.2 nm Ni, Al 2 O 3 exhibited 4.3 times higher methane turnover frequency than SiO 2 . The independent observation of the effects of the Ni nanoparticle size and support will provide valuable guidelines for designing effective methane dry reforming catalysts.

read more

Citations
More filters
Book ChapterDOI

Core-Shell Structured Catalysts for Catalytic Conversion of CO 2 to Syngas

TL;DR: In this paper, the performance and recent advances of core-shell catalysts for CO2 reforming of methane to produce syngas are discussed and compared with conventional supported catalysts.
Journal ArticleDOI

A review of catalyst modifications for a highly active and stable hydrogen production from methane

TL;DR: In this article , six modification strategies to achieve a robust catalyst have been discussed in category, including preparation methods, metal-support interaction, support confinement, surface acidity and basicity, oxygen defects and alloys.
Journal ArticleDOI

Modulating Morphology and Textural Properties of Al2O3 for Supported Ni Catalysts Toward Plasma-assisted Dry Reforming of Methane

TL;DR: In this paper , a series of Ni/Al2O3 catalysts with different morphologies (nanorod-NR, nanosheet-NS and spherical flower-SF) were investigated for plasma-assisted dry reforming of methane (DRM).
Journal ArticleDOI

Molecular Insights into Guaiacols Hydrodeoxygenation on Nickel Nanoparticle Surfaces

TL;DR: In this article , the reactive force field molecular dynamics (ReaxFF-MD) simulations are used to elucidate the HDO mechanism of guaiacols on the Ni nanoparticle surface.
Journal ArticleDOI

The Effect of Different Promoters (La2O3, CeO2, and ZrO2) on the Catalytic Activity of the Modified Vermiculite-Based Bimetallic NiCu/EXVTM-SiO2 Catalyst in Methane Dry Reforming.

TL;DR: In this paper, an X-NiCu/EXVTM-SiO2 (X = La, Ce, and Zr) catalyst was successfully prepared by using modified vermiculite as a support by the impregnation method.
References
More filters
Journal ArticleDOI

Controlled growth of monodisperse silica spheres in the micron size range

TL;DR: In this article, a system of chemical reactions has been developed which permits the controlled growth of spherical silica particles of uniform size by means of hydrolysis of alkyl silicates and subsequent condensation of silicic acid in alcoholic solutions.
Journal ArticleDOI

Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering.

TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Journal ArticleDOI

The Fischer–Tropsch process: 1950–2000

TL;DR: In this article, the Fischer-Tropsch (FT) reaction is used to produce purified syngas and its composition should match the overall usage ratio of the FT reactions, which depends on the product selectivity.
Journal ArticleDOI

A review of dry (CO2) reforming of methane over noble metal catalysts

TL;DR: Dry (CO2) reforming of methane literature for catalysts based on Rh, Ru, Pt, and Pd metals is reviewed, including the effect of these noble metals on the kinetics, mechanism and deactivation of these catalysts.
Related Papers (5)