scispace - formally typeset
Search or ask a question

Showing papers on "Arabidopsis published in 2001"


Journal ArticleDOI
TL;DR: Systematic screens for knockout mutations in MYB genes, followed by phenotypic analyses and the dissection of mutants with interesting phenotypes, have started to unravel the functions of the 125 R2R3-MYB genes in Arabidopsis thaliana.

1,779 citations


Journal ArticleDOI
TL;DR: Analysis of the development of wild-type Columbia (Col-0) plants and selected mutants are presented to illustrate a framework methodology that can be used to identify and interpret phenotypic differences in plants resulting from genetic variation and/or environmental stress.
Abstract: With the completion of the Arabidopsis genome sequencing project, the next major challenge is the large-scale determination of gene function. As a model organism for agricultural biotechnology, Arabidopsis presents the opportunity to provide key insights into the way that gene function can affect commercial crop production. In an attempt to aid in the rapid discovery of gene function, we have established a high throughput phenotypic analysis process based on a series of defined growth stages that serve both as developmental landmarks and as triggers for the collection of morphological data. The data collection process has been divided into two complementary platforms to ensure the capture of detailed data describing Arabidopsis growth and development over the entire life of the plant. The first platform characterizes early seedling growth on vertical plates for a period of 2 weeks. The second platform consists of an extensive set of measurements from plants grown on soil for a period of approximately 2 months. When combined with parallel processes for metabolic and gene expression profiling, these platforms constitute a core technology in the high throughput determination of gene function. We present here analyses of the development of wild-type Columbia (Col-0) plants and selected mutants to illustrate a framework methodology that can be used to identify and interpret phenotypic differences in plants resulting from genetic variation and/or environmental stress.

1,344 citations


Journal ArticleDOI
TL;DR: The distribution pattern of four RLK subfamilies on Arabidopsis chromosomes indicates that the expansion of this gene family is partly a consequence of duplication and reshuffling of theArabidopsis genome and of the generation of tandem repeats.
Abstract: Plant receptor-like kinases (RLKs) are proteins with a predicted signal sequence, single transmembrane region, and cytoplasmic kinase domain. Receptor-like kinases belong to a large gene family with at least 610 members that represent nearly 2.5% of Arabidopsis protein coding genes. We have categorized members of this family into subfamilies based on both the identity of the extracellular domains and the phylogenetic relationships between the kinase domains of subfamily members. Surprisingly, this structurally defined group of genes is monophyletic with respect to kinase domains when compared with the other eukaryotic kinase families. In an extended analysis, animal receptor kinases, Raf kinases, plant RLKs, and animal receptor tyrosine kinases form a well supported group sharing a common origin within the superfamily of serine/threonine/tyrosine kinases. Among animal kinase sequences, Drosophila Pelle and related cytoplasmic kinases fall within the plant RLK clade, which we now define as the RLK/Pelle family. A survey of expressed sequence tag records for land plants reveals that mosses, ferns, conifers, and flowering plants have similar percentages of expressed sequence tags representing RLK/Pelle homologs, suggesting that the size of this gene family may have been close to the present-day level before the diversification of land plant lineages. The distribution pattern of four RLK subfamilies on Arabidopsis chromosomes indicates that the expansion of this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats.

1,322 citations


Journal ArticleDOI
26 Apr 2001-Nature
TL;DR: It is shown that expression of CONSTANS (CO), a gene that accelerates flowering in response to long days, is modulated by the circadian clock and day length, suggesting mechanisms by which day length regulates flowering time.
Abstract: Flowering is often triggered by exposing plants to appropriate day lengths. This response requires an endogenous timer called the circadian clock to measure the duration of the day or night. This timer also controls daily rhythms in gene expression and behavioural patterns such as leaf movements. Several Arabidopsis mutations affect both circadian processes and flowering time; but how the effect of these mutations on the circadian clock is related to their influence on flowering remains unknown. Here we show that expression of CONSTANS (CO), a gene that accelerates flowering in response to long days, is modulated by the circadian clock and day length. Expression of a CO target gene, called FLOWERING LOCUS T (FT), is restricted to a similar time of day as expression of CO. Three mutations that affect circadian rhythms and flowering time alter CO and FT expression in ways that are consistent with their effects on flowering. In addition, the late flowering phenotype of such mutants is corrected by overexpressing CO. Thus, CO acts between the circadian clock and the control of flowering, suggesting mechanisms by which day length regulates flowering time.

1,294 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the expression of an NCED gene of Arabidopsis, AtNCED3, is induced by drought stress and controls the level of endogenous ABA under drought-stressed conditions.
Abstract: Abscisic acid (ABA), a plant hormone, is involved in responses to environmental stresses such as drought and high salinity, and is required for stress tolerance. ABA is synthesized de novo in response to dehydration. 9-cis-epoxycarotenoid dioxygenase (NCED) is thought to be a key enzyme in ABA biosynthesis. Here we demonstrate that the expression of an NCED gene of Arabidopsis, AtNCED3, is induced by drought stress and controls the level of endogenous ABA under drought-stressed conditions. Overexpression of AtNCED3 in transgenic Arabidopsis caused an increase in endogenous ABA level, and promoted transcription of drought- and ABA-inducible genes. Plants overexpressing AtNCED3 showed a reduction in transpiration rate from leaves and an improvement in drought tolerance. By contrast, antisense suppression and disruption of AtNCED3 gave a drought-sensitive phenotype. These results indicate that the expression of AtNCED3 plays a key role in ABA biosynthesis under drought-stressed conditions in Arabidopsis. We improved drought tolerance by gene manipulation of AtNCED3 causing the accumulation of endogenous ABA.

1,159 citations


Journal ArticleDOI
TL;DR: The results show that the full-length cDNA microarray is a useful material with which to analyze the expression pattern of Arabidopsis genes under drought and cold stresses, to identify target genes of stress-related transcription factors, and to identify potential cis-acting DNA elements by combining the expression data with the genomic sequence data.
Abstract: Full-length cDNAs are essential for functional analysis of plant genes. Using the biotinylated CAP trapper method, we constructed full-length Arabidopsis cDNA libraries from plants in different conditions, such as drought-treated, cold-treated, or unstressed plants, and at various developmental stages from germination to mature seed. We prepared a cDNA microarray using ∼1300 full-length Arabidopsis cDNAs to identify drought- and cold-inducible genes and target genes of DREB1A/CBF3, a transcription factor that controls stress-inducible gene expression. In total, 44 and 19 cDNAs for drought- and cold-inducible genes, respectively, were isolated, 30 and 10 of which were novel stress-inducible genes that have not been reported as drought- or cold-inducible genes previously. Twelve stress-inducible genes were identified as target stress-inducible genes of DREB1A, and six of them were novel. On the basis of RNA gel blot and microarray analyses, the six genes were identified as novel drought- and cold-inducible genes that are controlled by DREB1A. Eleven DREB1A target genes whose genomic sequences have been registered in the GenBank database contained the dehydration-responsive element (DRE) or DRE-related CCGAC core motif in their promoter regions. These results show that our full-length cDNA microarray is a useful material with which to analyze the expression pattern of Arabidopsis genes under drought and cold stresses, to identify target genes of stress-related transcription factors, and to identify potential cis-acting DNA elements by combining the expression data with the genomic sequence data.

1,149 citations


01 Jan 2001
TL;DR: It is shown here that overexpression of the cDNA encoding DREB1A in transgenic plants activated the expression of many of these stress tolerance genes under normal growing conditions and resulted in improved tolerance to drought, salt loading, and freezing.
Abstract: Plant productivity is greatly affected by environmental stresses such as drought, salt loading and freezing. We reported that a cis-acting promoter element, the dehydration response element (DRE), plays an important role in regulating gene expression in response to these stresses in Arabidopsis. The transcription factor DREB1A specifically interacts with the DRE and induces expression of stress tolerance genes. We show here that overexpression of the cDNA encoding DREB1A in transgenic Arabidopsis plants activated the expression of many of theses stress tolerance genes under normal growing conditions and resulted in improved tolerance to drought, salt loading and freezing. However, use of the strong constitutive 35S cauliflower mosaic virus (CaMV) promoter to drive expression of DREB1A also resulted in severe growth retardation under normal growing conditions. In contrast, expression of DREB1A from the stress-inducible rd29A promoter gave rise to minimal effects on plant growth while providing an even greater tolerance to stress conditions than did expression of the gene from the CaMV promoter. As the DRE-related regulatory element is not limited to Arabidopsis the DREB1A cDNA and the rd29A promoter may be useful for improving the stress tolerance of agriculturally important crops by gene transfer.

1,138 citations


Journal ArticleDOI
12 Jan 2001-Science
TL;DR: Results from tryptophan analog feeding experiments and biochemical assays indicate that YUCCA catalyzes hydroxylation of the amino group of tryptamine, a rate-limiting step in tryptophile-dependent auxin biosynthesis.
Abstract: Although auxin is known to regulate many processes in plant development and has been studied for over a century, the mechanisms whereby plants produce it have remained elusive. Here we report the characterization of a dominant Arabidopsis mutant, yucca, which contains elevated levels of free auxin. YUCCA encodes a flavin monooxygenase-like enzyme and belongs to a family that includes at least nine other homologous Arabidopsis genes, a subset of which appears to have redundant functions. Results from tryptophan analog feeding experiments and biochemical assays indicate that YUCCA catalyzes hydroxylation of the amino group of tryptamine, a rate-limiting step in tryptophan-dependent auxin biosynthesis.

1,089 citations


Journal ArticleDOI
03 Aug 2001-Science
TL;DR: It is shown that both proteins bind to a region in the TOC1 promoter that is critical for its clock regulation, and these interactions form a loop critical for clock function inArabidopsis.
Abstract: The interactive regulation between clock genes is central for oscillator function. Here, we show interactions between the Arabidopsis clock genes LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), and TIMING OF CAB EXPRESSION 1 (TOC1). The MYB transcription factors LHY and CCA1 negatively regulate TOC1 expression. We show that both proteins bind to a region in the TOC1 promoter that is critical for its clock regulation. Conversely, TOC1 appears to participate in the positive regulation of LHY and CCA1 expression. Our results indicate that these interactions form a loop critical for clock function in Arabidopsis.

1,063 citations


Journal ArticleDOI
27 Sep 2001-Nature
TL;DR: A eukaryotic two-component signalling circuit that initiates cytokinin signalling through distinct hybrid histidine protein kinase activities at the plasma membrane is identified.
Abstract: Cytokinins are essential plant hormones that are involved in shoot meristem and leaf formation, cell division, chloroplast biogenesis and senescence. Although hybrid histidine protein kinases have been implicated in cytokinin perception in Arabidopsis, the action of histidine protein kinase receptors and the downstream signalling pathway has not been elucidated to date. Here we identify a eukaryotic two-component signalling circuit that initiates cytokinin signalling through distinct hybrid histidine protein kinase activities at the plasma membrane. Histidine phosphotransmitters act as signalling shuttles between the cytoplasm and nucleus in a cytokinin-dependent manner. The short signalling circuit reaches the nuclear target genes by enabling nuclear response regulators ARR1, ARR2 and ARR10 as transcription activators. The cytokinin-inducible ARR4, ARR5, ARR6 and ARR7 genes encode transcription repressors that mediate a negative feedback loop in cytokinin signalling. Ectopic expression in transgenic Arabidopsis of ARR2, the rate-limiting factor in the response to cytokinin, is sufficient to mimic cytokinin in promoting shoot meristem proliferation and leaf differentiation, and in delaying leaf senescence.

918 citations


Journal ArticleDOI
TL;DR: A large-scale analysis of the Arabidopsis transcriptome during oxidative stress identified 175 non-redundant expressed sequence tags that are regulated by H(2)O(2), and a substantial proportion have predicted functions in cell rescue and defense processes.
Abstract: Oxidative stress, resulting from an imbalance in the accumulation and removal of reactive oxygen species such as hydrogen peroxide (H2O2), is a challenge faced by all aerobic organisms In plants, exposure to various abiotic and biotic stresses results in accumulation of H2O2 and oxidative stress Increasing evidence indicates that H2O2 functions as a stress signal in plants, mediating adaptive responses to various stresses To analyze cellular responses to H2O2, we have undertaken a large-scale analysis of the Arabidopsis transcriptome during oxidative stress Using cDNA microarray technology, we identified 175 non-redundant expressed sequence tags that are regulated by H2O2 Of these, 113 are induced and 62 are repressed by H2O2 A substantial proportion of these expressed sequence tags have predicted functions in cell rescue and defense processes RNA-blot analyses of selected genes were used to verify the microarray data and extend them to demonstrate that other stresses such as wilting, UV irradiation, and elicitor challenge also induce the expression of many of these genes, both independently of, and, in some cases, via H2O2

Journal ArticleDOI
22 Feb 2001-Nature
TL;DR: Evidence is provided that cytokinins can activate CRE1 to initiate phosphorelay signalling, and this work identifies Arabidopsis cre1 (cytokinin response 1) mutants, which exhibited reduced responses to cytokinin responses.
Abstract: Cytokinins are a class of plant hormones that are central to the regulation of cell division and differentiation in plants. It has been proposed that they are detected by a two-component system, because overexpression of the histidine kinase gene CKI1 induces typical cytokinin responses and genes for a set of response regulators of two-component systems can be induced by cytokinins. Two-component systems use a histidine kinase as an environmental sensor and rely on a phosphorelay for signal transduction. They are common in microorganisms, and are also emerging as important signal detection routes in plants. Here we report the identification of a cytokinin receptor. We identified Arabidopsis cre1 (cytokinin response 1) mutants, which exhibited reduced responses to cytokinins. The mutated gene CRE1 encodes a histidine kinase. CRE1 expression conferred a cytokinin-dependent growth phenotype on a yeast mutant that lacked the endogenous histidine kinase SLN1 (ref. 10), providing direct evidence that CRE1 is a cytokinin receptor. We also provide evidence that cytokinins can activate CRE1 to initiate phosphorelay signalling.

Journal ArticleDOI
TL;DR: Results indicate that the DAD1 protein is a chloroplastic phospholipase A1 that catalyzes the initial step of JA biosynthesis and is restricted in the stamen filaments.
Abstract: The Arabidopsis mutant defective in anther dehiscence1 (dad1) shows defects in anther dehiscence, pollen maturation, and flower opening. The defects were rescued by the exogenous application of jasmonic acid (JA) or linolenic acid, which is consistent with the reduced accumulation of JA in the dad1 flower buds. We identified the DAD1 gene by T-DNA tagging, which is characteristic to a putative N-terminal transit peptide and a conserved motif found in lipase active sites. DAD1 protein expressed in Escherichia coli hydrolyzed phospholipids in an sn-1-specific manner, and DAD1-green fluorescent protein fusion protein expressed in leaf epidermal cells localized predominantly in chloroplasts. These results indicate that the DAD1 protein is a chloroplastic phospholipase A1 that catalyzes the initial step of JA biosynthesis. DAD1 promoter::beta-glucuronidase analysis revealed that the expression of DAD1 is restricted in the stamen filaments. A model is presented in which JA synthesized in the filaments regulates the water transport in stamens and petals.

Journal ArticleDOI
TL;DR: It is now clear that gene-for-gene resistance can be mediated through at least three genetically distinguishable pathways.


Journal ArticleDOI
TL;DR: Analyses of auxin transport in the inflorescence and hypocotyl of independent tt4 alleles indicate that auxIn transport is elevated in plants with a tt 4 mutation, which is consistent with a role for flavonoids as endogenous regulators of Auxin transport.
Abstract: Polar transport of the plant hormone auxin controls many aspects of plant growth and development. A number of synthetic compounds have been shown to block the process of auxin transport by inhibition of the auxin efflux carrier complex. These synthetic auxin transport inhibitors may act by mimicking endogenous molecules. Flavonoids, a class of secondary plant metabolic compounds, have been suggested to be auxin transport inhibitors based on their in vitro activity. The hypothesis that flavonoids regulate auxin transport in vivo was tested in Arabidopsis by comparing wild-type (WT) and transparent testa (tt4) plants with a mutation in the gene encoding the first enzyme in flavonoid biosynthesis, chalcone synthase. In a comparison between tt4 and WT plants, phenotypic differences were observed, including three times as many secondary inflorescence stems, reduced plant height, decreased stem diameter, and increased secondary root development. Growth of WT Arabidopsis plants on naringenin, a biosynthetic precursor to those flavonoids with auxin transport inhibitor activity in vitro, leads to a reduction in root growth and gravitropism, similar to the effects of synthetic auxin transport inhibitors. Analyses of auxin transport in the inflorescence and hypocotyl of independent tt4 alleles indicate that auxin transport is elevated in plants with a tt4 mutation. In hypocotyls of tt4, this elevated transport is reversed when flavonoids are synthesized by growth of plants on the flavonoid precursor, naringenin. These results are consistent with a role for flavonoids as endogenous regulators of auxin transport.

Journal ArticleDOI
TL;DR: The cloned LEC2 gene is cloned on the basis of its chromosomal position and it is shown that the predicted polypeptide contains a B3 domain, a DNA-binding motif unique to plants that is characteristic of several transcription factors.
Abstract: The Arabidopsis LEAFY COTYLEDON2 (LEC2) gene is a central embryonic regulator that serves critical roles both early and late during embryo development. LEC2 is required for the maintenance of suspensor morphology, specification of cotyledon identity, progression through the maturation phase, and suppression of premature germination. We cloned the LEC2 gene on the basis of its chromosomal position and showed that the predicted polypeptide contains a B3 domain, a DNA-binding motif unique to plants that is characteristic of several transcription factors. We showed that LEC2 RNA accumulates primarily during seed development, consistent with our finding that LEC2 shares greatest similarity with the B3 domain transcription factors that act primarily in developing seeds, VIVIPAROUS1/ABA INSENSITIVE3 and FUSCA3. Ectopic, postembryonic expression of LEC2 in transgenic plants induces the formation of somatic embryos and other organ-like structures and often confers embryonic characteristics to seedlings. Together, these results suggest that LEC2 is a transcriptional regulator that establishes a cellular environment sufficient to initiate embryo development.

Journal ArticleDOI
TL;DR: It is argued that the general intron patterns in the subfamilies were formed before the split of monocotyledons and dicotylingons, and a new and more consistent nomenclature is proposed.
Abstract: Major intrinsic proteins (MIPs) facilitate the passive transport of small polar molecules across membranes. MIPs constitute a very old family of proteins and different forms have been found in all kinds of living organisms, including bacteria, fungi, animals, and plants. In the genomic sequence of Arabidopsis, we have identified 35 different MIP-encoding genes. Based on sequence similarity, these 35 proteins are divided into four different subfamilies: plasma membrane intrinsic proteins, tonoplast intrinsic proteins, NOD26-like intrinsic proteins also called NOD26-like MIPs, and the recently discovered small basic intrinsic proteins. In Arabidopsis, there are 13 plasma membrane intrinsic proteins, 10 tonoplast intrinsic proteins, nine NOD26-like intrinsic proteins, and three small basic intrinsic proteins. The gene structure in general is conserved within each subfamily, although there is a tendency to lose introns. Based on phylogenetic comparisons of maize (Zea mays) and Arabidopsis MIPs (AtMIPs), it is argued that the general intron patterns in the subfamilies were formed before the split of monocotyledons and dicotyledons. Although the gene structure is unique for each subfamily, there is a common pattern in how transmembrane helices are encoded on the exons in three of the subfamilies. The nomenclature for plant MIPs varies widely between different species but also between subfamilies in the same species. Based on the phylogeny of all AtMIPs, a new and more consistent nomenclature is proposed. The complete set of AtMIPs, together with the new nomenclature, will facilitate the isolation, classification, and labeling of plant MIPs from other species.

Journal ArticleDOI
TL;DR: Sequencing of the Arabidopsis genome revealed a unique complexity of the plant heat stress transcription factor (Hsf) family, and a new class of Hsfs (AtHsfC1) closely related to Hsf1 from rice and to HsFS identified from frequently found expressed sequence tags of tomato, potato, barley, and soybean.
Abstract: Sequencing of the Arabidopsis genome revealed a unique complexity of the plant heat stress transcription factor (Hsf) family. By structural characteristics and phylogenetic comparison, the 21 representatives are assigned to 3 classes and 14 groups. Particularly striking is the finding of a new class of Hsfs (AtHsfC1) closely related to Hsf1 from rice and to Hsfs identified from frequently found expressed sequence tags of tomato, potato, barley, and soybean. Evidently, this new type of Hsf is well expressed in different plant tissues. Besides the DNA binding and oligomerization domains (HR-A/B region), we identified other functional modules of Arabidopsis Hsfs by sequence comparison with the well-characterized tomato Hsfs. These are putative motifs for nuclear import and export and transcriptional activation (AHA motifs). There is intriguing flexibility of size and sequence in certain parts of the otherwise strongly conserved N-terminal half of these Hsfs. We have speculated about possible exon-intron borders in this region in the ancient precursor gene of plant Hsfs, similar to the exon-intron structure of the present mammalian Hsf-encoding genes.

Journal ArticleDOI
TL;DR: It is demonstrated that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains, indicating that nPL1 also functions as a light receptor kinase.
Abstract: UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner.

Journal ArticleDOI
TL;DR: The importance of receptor protein kinases in plant biology was revealed by the discovery of a family of more than 400 genes coding for receptor-like kinases (RLKs) present in the recently sequenced genome of the model plant Arabidopsis.
Abstract: Plant receptor-like kinases (RLKs) are transmembrane proteins with putative amino-terminal extracellular domains and carboxyl-terminal intracellular kinase domains, with striking resemblance in domain organization to the animal receptor tyrosine kinases such as epidermal growth factor receptor. The recently sequenced Arabidopsis genome contains more than 600 RLK homologs, representing nearly 2.5% of the annotated protein-coding genes in Arabidopsis. Although only a handful of these genes have known functions and fewer still have identified ligands or downstream targets, the studies of several RLKs such as CLAVATA1, Brassinosteroid Insensitive 1, Flagellin Insensitive 2, and S-locus receptor kinase provide much-needed information on the functions mediated by members of this large gene family. RLKs control a wide range of processes, including development, disease resistance, hormone perception, and self-incompatibility. Combined with the expression studies and biochemical analysis of other RLKs, more details of RLK function and signaling are emerging.

Journal ArticleDOI
TL;DR: It is concluded that KRP2 exerts a plant growth inhibitory activity by reducing cell proliferation in leaves, but, in contrast to its mammalian counterparts, it may not control the timing of cell cycle exit and differentiation.
Abstract: Cyclin-dependent kinase inhibitors, such as the mammalian p27Kip1 protein, regulate correct cell cycle progression and the integration of developmental signals with the core cell cycle machinery. These inhibitors have been described in plants, but their function remains unresolved. We have isolated seven genes from Arabidopsis that encode proteins with distant sequence homology with p27Kip1, designated Kip-related proteins (KRPs). The KRPs were characterized by their domain organization and transcript profiles. With the exception of KRP5, all presented the same cyclin-dependent kinase binding specificity. When overproduced, KRP2 dramatically inhibited cell cycle progression in leaf primordia cells without affecting the temporal pattern of cell division and differentiation. Mature transgenic leaves were serrated and consisted of enlarged cells. Although the ploidy levels in young leaves were unaffected, endoreduplication was suppressed in older leaves. We conclude that KRP2 exerts a plant growth inhibitory activity by reducing cell proliferation in leaves, but, in contrast to its mammalian counterparts, it may not control the timing of cell cycle exit and differentiation.

Journal ArticleDOI
TL;DR: There appears to be a modular genetic system regulating glucos inolate profiles in Arabidopsis that allows the rapid generation of new glucosinolate combinations in response to changing herbivory or other selective pressures.
Abstract: Glucosinolates are biologically active secondary metabolites of the Brassicaceae and related plant families that influence plant/insect interactions. Specific glucosinolates can act as feeding deterrents or stimulants, depending upon the insect species. Hence, natural selection might favor the presence of diverse glucosinolate profiles within a given species. We determined quantitative and qualitative variation in glucosinolates in the leaves and seeds of 39 Arabidopsis ecotypes. We identified 34 different glucosinolates, of which the majority are chain-elongated compounds derived from methionine. Polymorphism at only five loci was sufficient to generate 14 qualitatitvely different leaf glucosinolate profiles. Thus, there appears to be a modular genetic system regulating glucosinolate profiles in Arabidopsis. This system allows the rapid generation of new glucosinolate combinations in response to changing herbivory or other selective pressures. In addition to the qualitative variation in glucosinolate profiles, we found a nearly 20-fold difference in the quantity of total aliphatic glucosinolates and were able to identify a single locus that controls nearly three-quarters of this variation.

Journal ArticleDOI
Jen Sheen1
TL;DR: The development of defined protoplast transient expression systems for high-throughput screening and systematic characterization of gene functions has greatly contributed to elucidating plant signal transduction pathways, in combination with genetic, genomic, and transgenic approaches.
Abstract: Plant protoplasts show physiological perceptions and responses to hormones, metabolites, environmental cues, and pathogen-derived elicitors, similar to cell-autonomous responses in intact tissues and plants. The development of defined protoplast transient expression systems for high-throughput screening and systematic characterization of gene functions has greatly contributed to elucidating plant signal transduction pathways, in combination with genetic, genomic, and transgenic approaches.

Journal ArticleDOI
TL;DR: It is suggested that certain perturbations of the tetrapyrrole biosynthetic pathway generate a signal from chloroplasts that causes transcriptional repression of nuclear genes encoding plastid-localized proteins.
Abstract: A plastid-derived signal plays an important role in the coordinated expression of both nuclear- and chloroplast-localized genes that encode photosynthesis-related proteins. Arabidopsis GUN (genomes uncoupled) loci have been identified as components of plastid-to-nucleus signal transduction. Unlike wild-type plants, gun mutants have nuclear Lhcb1 expression in the absence of chloroplast development. We observed a synergistic phenotype in some gun double-mutant combinations, suggesting there are at least two independent pathways in plastid-to-nucleus signal transduction. There is a reduction of chlorophyll accumulation in gun4 and gun5 mutant plants, and a gun4gun5 double mutant shows an albino phenotype. We cloned the GUN5 gene, which encodes the ChlH subunit of Mg-chelatase. We also show that gun2 and gun3 are alleles of the known photomorphogenic mutants, hy1 and hy2, which are required for phytochromobilin synthesis from heme. These findings suggest that certain perturbations of the tetrapyrrole biosynthetic pathway generate a signal from chloroplasts that causes transcriptional repression of nuclear genes encoding plastid-localized proteins. The comparison of mutant phenotypes of gun5 and another Mg-chelatase subunit (ChlI) mutant suggests a specific function for ChlH protein in the plastid-signaling pathway.

Journal ArticleDOI
TL;DR: It is concluded that components of the CBF cold-response pathway are highly conserved in flowering plants and not limited to those that cold acclimate.
Abstract: Many plants increase in freezing tolerance in response to low, nonfreezing temperatures, a phenomenon known as cold acclimation. Cold acclimation in Arabidopsis involves rapid cold-induced expression of the C-repeat/dehydration-responsive element binding factor (CBF) transcriptional activators followed by expression of CBF-targeted genes that increase freezing tolerance. Here, we present evidence for a CBF cold-response pathway in Brassica napus. We show that B. napus encodes CBF-like genes and that transcripts for these genes accumulate rapidly in response to low temperature followed closely by expression of the cold-regulated Bn115 gene, an ortholog of the Arabidopsis CBF-targeted COR15a gene. Moreover, we show that constitutive overexpression of the Arabidopsis CBF genes in transgenic B. napus plants induces expression of orthologs of Arabidopsis CBF-targeted genes and increases the freezing tolerance of both nonacclimated and cold-acclimated plants. Transcripts encoding CBF-like proteins were also found to accumulate rapidly in response to low temperature in wheat (Triticum aestivum L. cv Norstar) and rye (Secale cereale L. cv Puma), which cold acclimate, as well as in tomato (Lycopersicon esculentum var. Bonny Best, Castle Mart, Micro-Tom, and D Huang), a freezing-sensitive plant that does not cold acclimate. An alignment of the CBF proteins from Arabidopsis, B. napus, wheat, rye, and tomato revealed the presence of conserved amino acid sequences, PKK/RPAGRxKFxETRHP and DSAWR, that bracket the AP2/EREBP DNA binding domains of the proteins and distinguish them from other members of the AP2/EREBP protein family. We conclude that components of the CBF cold-response pathway are highly conserved in flowering plants and not limited to those that cold acclimate.

Journal ArticleDOI
TL;DR: Analysis of salt overly sensitive Arabidopsis mutants revealed a novel calcium-regulated protein kinase pathway for response to the ionic aspect of salt stress and a transcriptional cascade in cold-regulated gene expression.

Journal ArticleDOI
TL;DR: The Arabidopsis EDS1 and PAD4 genes encode lipase‐like proteins that function in resistance (R) gene‐mediated and basal plant disease resistance and two functions are proposed: the first is required early in plant defence, independently of P AD4, and the second recruits PAD 4 in the amplification of defences, possibly by direct EDS2–PAD4 association.
Abstract: The Arabidopsis EDS1 and PAD4 genes encode lipase-like proteins that function in resistance (R) gene-mediated and basal plant disease resistance. Phenotypic analysis of eds1 and pad4 null mutants shows that EDS1 and PAD4 are required for resistance conditioned by the same spectrum of R genes but fulfil distinct roles within the defence pathway. EDS1 is essential for elaboration of the plant hypersensitive response, whereas EDS1 and PAD4 are both required for accumulation of the plant defence-potentiating molecule, salicylic acid. EDS1 is necessary for pathogen-induced PAD4 mRNA accumulation, whereas mutations in PAD4 or depletion of salicylic acid only partially compromise EDS1 expression. Yeast two-hybrid analysis reveals that EDS1 can dimerize and interact with PAD4. However, EDS1 dimerization is mediated by different domains to those involved in EDS1–PAD4 association. Co-immunoprecipitation experiments show that EDS1 and PAD4 proteins interact in healthy and pathogen-challenged plant cells. We propose two functions for EDS1. The first is required early in plant defence, independently of PAD4. The second recruits PAD4 in the amplification of defences, possibly by direct EDS1–PAD4 association.

Journal ArticleDOI
16 Nov 2001-Cell
TL;DR: Vernalization induces a developmental state that is mitotically stable, suggesting that it may have an epigenetic basis, and VRN2 function stably maintains FLC repression after a cold treatment, serving as a mechanism for the cellular memory of vernalization.

Journal ArticleDOI
10 May 2001-Nature
TL;DR: This class of Arabidopsis elements transposes and increases in copy number at high frequencies specifically in the ddm1 hypomethylation background, and the DDM1 gene not only epigenetically ensures proper gene expression, but also stabilizes transposon behaviour, possibly through chromatin remodelling or DNA methylation.
Abstract: A major component of the large genomes of higher plants and vertebrates comprises transposable elements and their derivatives, which potentially reduce the stability of the genome. It has been proposed that methylation of cytosine residues may suppress transposition, but experimental evidence for this has been limited. Reduced methylation of repeat sequences results from mutations in the Arabidopsis gene DDM1 (decrease in DNA methylation), which encodes a protein similar to the chromatin-remodelling factor SWI2/SNF2 (ref. 7). In the ddm1-induced hypomethylation background, silent repeat sequences are often reactivated transcriptionally, but no transposition of endogenous elements has been observed. A striking feature of the ddm1 mutation is that it induces developmental abnormalities by causing heritable changes in other loci. Here we report that one of the ddm1-induced abnormalities is caused by insertion of CAC1, an endogenous CACTA family transposon. This class of Arabidopsis elements transposes and increases in copy number at high frequencies specifically in the ddm1 hypomethylation background. Thus the DDM1 gene not only epigenetically ensures proper gene expression, but also stabilizes transposon behaviour, possibly through chromatin remodelling or DNA methylation.