scispace - formally typeset
Search or ask a question

Showing papers on "Biotic stress published in 2020"


Journal ArticleDOI
TL;DR: This article proposes a 'DefenseBiome' concept that informs the design and construction of beneficial microbial synthetic communities for improving fundamental understanding of plant-microbial interactions and the development of plant probiotics.

263 citations


Journal ArticleDOI
TL;DR: The contribution of AMF on plant growth and performance in stressed environments is presented and it is shown that AMF improve the quality of soil aggregation, drive the structure of plant and bacteria communities, and enhance ecosystem stability.
Abstract: Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with most terrestrial plants. These soil microorganisms enhance the plant’s nutrient uptake by extending the root absorbing area. In return, the symbiont receives plant carbohydrates for the completion of its life cycle. AMF also helps plants to cope with biotic and abiotic stresses such as salinity, drought, extreme temperature, heavy metal, diseases, and pathogens. For abiotic stresses, the mechanisms of adaptation of AMF to these stresses are generally linked to increased hydromineral nutrition, ion selectivity, gene regulation, production of osmolytes, and the synthesis of phytohormones and antioxidants. Regarding the biotic stresses, AMF are involved in pathogen resistance including competition for colonization sites and improvement of the plant’s defense system. Furthermore, AMF have a positive impact on ecosystems. They improve the quality of soil aggregation, drive the structure of plant and bacteria communities, and enhance ecosystem stability. Thus, a plant colonized by AMF will use more of these adaptation mechanisms compared to a plant without mycorrhizae. In this review, we present the contribution of AMF on plant growth and performance in stressed environments.

154 citations


Journal ArticleDOI
TL;DR: Questions related to their mode of action, routes of propagation, and integration, remain unanswered, and a proposed model for systemic signal integration, focusing on the ROS wave is provided.
Abstract: Rapidly communicating the perception of an abiotic stress event, wounding or pathogen infection, from its initial site of occurrence to the entire plant, i.e. rapid systemic signaling, is essential for successful plant acclimation and defense. Recent studies highlighted an important role for several rapid whole-plant systemic signals in mediating plant acclimation and defense during different abiotic and biotic stresses. These include calcium, reactive oxygen species (ROS), hydraulic and electric waves. Although the role of some of these signals in inducing and coordinating whole-plant systemic responses was demonstrated, many questions related to their mode of action, routes of propagation and integration remain unanswered. In addition, it is unclear how these signals convey specificity to the systemic response, and how are they integrated under conditions of stress combination. Here we highlight many of these questions, as well as provide a proposed model for systemic signal integration, focusing on the ROS wave.

145 citations


Journal ArticleDOI
TL;DR: CYPs have an enormous potential to be used as a candidate for engineering crop species resilient to biotic and abiotic stresses, and the latest research on the role of CYPs in plant stress response is summarized.
Abstract: Cytochrome P450s (CYPs) are the largest enzyme family involved in NADPH- and/or O2-dependent hydroxylation reactions across all the domains of life. In plants and animals, CYPs play a central role in the detoxification of xenobiotics. In addition to this function, CYPs act as versatile catalysts and play a crucial role in the biosynthesis of secondary metabolites, antioxidants, and phytohormones in higher plants. The molecular and biochemical processes catalyzed by CYPs have been well characterized, however, the relationship between the biochemical process catalyzed by CYPs and its effect on several plant functions was not well established. The advent of next-generation sequencing opened new avenues to unravel the involvement of CYPs in several plant functions such as plant stress response. The expression of several CYP genes are regulated in response to environmental stresses, and they also play a prominent role in the crosstalk between abiotic and biotic stress responses. CYPs have an enormous potential to be used as a candidate for engineering crop species resilient to biotic and abiotic stresses. The objective of this review is to summarize the latest research on the role of CYPs in plant stress response.

145 citations


Journal ArticleDOI
TL;DR: The formation of trichomes and the accumulation of phenolics are interrelated at the molecular level as discussed by the authors, which can be attributed to the excellent combination of suitable structural traits and chemical reinforcement in the form of phenolic compounds, primarily flavonoids.
Abstract: As superficial structures, non-glandular trichomes, protect plant organs against multiple biotic and abiotic stresses. The protective and defensive roles of these epidermal appendages are crucial to developing organs and can be attributed to the excellent combination of suitable structural traits and chemical reinforcement in the form of phenolic compounds, primarily flavonoids. Both the formation of trichomes and the accumulation of phenolics are interrelated at the molecular level. During the early stages of development, non-glandular trichomes show strong morphological similarities to glandular ones such as the balloon-like apical cells with numerous phenolics. At later developmental stages, and during secondary wall thickening, phenolics are transferred to the cell walls of the trichomes. Due to the diffuse deposition of phenolics in the cell walls, trichomes provide protection against UV-B radiation by behaving as optical filters, screening out wavelengths that could damage sensitive tissues. Protection from strong visible radiation is also afforded by increased surface light reflectance. Moreover, the mixtures of trichome phenolics represent a superficial chemical barrier that provides protection against biotic stress factors such as herbivores and pathogens. Although the cells of some trichomes die at maturity, they can modulate their quantitative and qualitative characteristics during development, depending on the prevailing conditions of the external biotic or abiotic environment. In fact, the structure and chemical constituents of trichomes may change due to the particular light regime, herbivore damage, wounding, water stress, salinity and the presence of heavy metals. Hence, trichomes represent dynamic protective structures that may greatly affect the outcome of many plant–environment interactions.

135 citations


Journal ArticleDOI
TL;DR: This review summarizes the current knowledge of wax biosynthesis and regulation in relation to abiotic and biotic stresses and stress responses and describes the roles of wax crystalline structures and chemical compounds.
Abstract: The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and sealed with organic, solvent-extractable cuticular waxes. Cuticular wax ultrastructure and chemical composition differ with plant species, developmental stage and physiological state. Despite this complexity, cuticular wax consistently serves a critical role in restricting nonstomatal water loss. It also protects the plant against other environmental stresses, including desiccation, UV radiation, microorganisms and insects. Within the broader context of plant responses to abiotic and biotic stresses, our knowledge of the explicit roles of wax crystalline structures and chemical compounds is lacking. In this review, we summarize our current knowledge of wax biosynthesis and regulation in relation to abiotic and biotic stresses and stress responses.

129 citations


Journal ArticleDOI
TL;DR: In this paper, the authors focused on shaping rhizosphere microbiome of susceptible host plant from resistant plant which comprises of specific type of microbial community with multiple potential benefits and targeted CRISPR/Cas9 based strategies for the manipulation of susceptibility genes in crop plants for improving plant health.

126 citations


Journal ArticleDOI
TL;DR: The objective of this work is to design an effective and practical system capable of identifying and estimating the stress severity caused by biotic agents on coffee leaves, which consists of a multi-task system based on convolutional neural networks.

126 citations


Journal ArticleDOI
TL;DR: The purpose of this review was to look forward to inspiring the rapid development of Glu signaling research in plant biology, particularly in the field of stress biology of plants.
Abstract: It is well known that glutamate (Glu), a neurotransmitter in human body, is a protein amino acid. It plays a very important role in plant growth and development. Nowadays, Glu has been found to emerge as signaling role. Under normal conditions, Glu takes part in seed germination, root architecture, pollen germination, and pollen tube growth. Under stress conditions, Glu participates in wound response, pathogen resistance, response and adaptation to abiotic stress (such as salt, cold, heat, and drought), and local stimulation (abiotic or biotic stress)-triggered long distance signaling transduction. In this review, in the light of the current opinion on Glu signaling in plants, the following knowledge was updated and discussed. 1) Glu metabolism; 2) signaling role of Glu in plant growth, development, and response and adaptation to environmental stress; as well as 3) the underlying research directions in the future. The purpose of this review was to look forward to inspiring the rapid development of Glu signaling research in plant biology, particularly in the field of stress biology of plants.

111 citations


Journal ArticleDOI
TL;DR: Recent advances on the understanding of the molecular mechanisms of autophagy in plants are presented and howAutophagy contributes to plant development and plants’ adaptation to the environment is presented.
Abstract: Autophagy is an intracellular process that facilitates the bulk degradation of cytoplasmic materials by the vacuole or lysosome in eukaryotes. This conserved process is achieved through the coordination of different autophagy-related genes (ATGs). Autophagy is essential for recycling cytoplasmic material and eliminating damaged or dysfunctional cell constituents, such as proteins, aggregates or even entire organelles. Plant autophagy is necessary for maintaining cellular homeostasis under normal conditions and is upregulated during abiotic and biotic stress to prolong cell life. In this review, we present recent advances on our understanding of the molecular mechanisms of autophagy in plants and how autophagy contributes to plant development and plants' adaptation to the environment.

101 citations


Journal ArticleDOI
25 Mar 2020-Genes
TL;DR: Six major TFs that are efficient in stress responses through regulating secondary metabolism for the direct cessation of stress factors are collected andModulation of these TFs at transcriptional and post-transcriptional levels can facilitate molecular breeding and genetic improvement of crop plants regarding stress sensitivity and response through production of defensive compounds.
Abstract: Plants are adapted to sense numerous stress stimuli and mount efficient defense responses by directing intricate signaling pathways. They respond to undesirable circumstances to produce stress-inducible phytochemicals that play indispensable roles in plant immunity. Extensive studies have been made to elucidate the underpinnings of defensive molecular mechanisms in various plant species. Transcriptional factors (TFs) are involved in plant defense regulations through acting as mediators by perceiving stress signals and directing downstream defense gene expression. The cross interactions of TFs and stress signaling crosstalk are decisive in determining accumulation of defense metabolites. Here, we collected the major TFs that are efficient in stress responses through regulating secondary metabolism for the direct cessation of stress factors. We focused on six major TF families including AP2/ERF, WRKY, bHLH, bZIP, MYB, and NAC. This review is the compilation of studies where researches were conducted to explore the roles of TFs in stress responses and the contribution of secondary metabolites in combating stress influences. Modulation of these TFs at transcriptional and post-transcriptional levels can facilitate molecular breeding and genetic improvement of crop plants regarding stress sensitivity and response through production of defensive compounds.

Journal ArticleDOI
TL;DR: This study introduces a strategy based on isotope-labeled in vitro phosphorylation reactions using in vivo phosphorylated peptides as substrate pools and applies this strategy to identify putative substrates of nine protein kinases that function in plant abiotic and biotic stress responses, revealing an unprecedented proteome-wide map of the targets of protein kinase during plant stress responses.
Abstract: Protein kinases are major regulatory components in almost all cellular processes in eukaryotic cells. By adding phosphate groups, protein kinases regulate the activity, localization, protein–protein interactions, and other features of their target proteins. It is known that protein kinases are central components in plant responses to environmental stresses such as drought, high salinity, cold, and pathogen attack. However, only a few targets of these protein kinases have been identified. Moreover, how these protein kinases regulate downstream biological processes and mediate stress responses is still largely unknown. In this study, we introduce a strategy based on isotope-labeled in vitro phosphorylation reactions using in vivo phosphorylated peptides as substrate pools and apply this strategy to identify putative substrates of nine protein kinases that function in plant abiotic and biotic stress responses. As a result, we identified more than 5,000 putative target sites of osmotic stress-activated SnRK2.4 and SnRK2.6, abscisic acid-activated protein kinases SnRK2.6 and casein kinase 1-like 2 (CKL2), elicitor-activated protein kinase CDPK11 and MPK6, cold-activated protein kinase MPK6, H2O2-activated protein kinase OXI1 and MPK6, and salt-induced protein kinase SOS1 and MPK6, as well as the low-potassium-activated protein kinase CIPK23. These results provide comprehensive information on the role of these protein kinases in the control of cellular activities and could be a valuable resource for further studies on the mechanisms underlying plant responses to environmental stresses.

Journal ArticleDOI
09 Jan 2020-Cell
TL;DR: A biosynthetic gene cluster in tomato is discovered and a direct role of the cluster in falcarindiol biosynthesis and resistance to fungal and bacterial pathogens in tomato leaves is demonstrated.

Journal ArticleDOI
TL;DR: Determining the metabolic connection between amino acid metabolisms will help improve the understanding of the metabolic flux, supporting studies on crop nutrition.
Abstract: Extensive efforts have been made to fortify essential amino acids and boost nutrition in plants, but unintended effects on growth and physiology are also observed. Understanding how different amino acid metabolisms are connected with other biological pathways is therefore important. In addition to protein synthesis, amino acid metabolism is also tightly linked to energy and carbohydrate metabolism, the carbon-nitrogen budget, hormone and secondary metabolism, stress responses, and so on. Here, we update the currently available information on the connections between amino acid metabolisms, which tend to be overlooked in higher plants. Particular emphasis was placed on the connections between lysine metabolism and other pathways, such as tryptophan metabolism, the tricarboxylic acid cycle, abiotic and biotic stress responses, starch metabolism, and the unfolded protein response. Interestingly, regulation of lysine metabolism was found to differ between plant species, as is the case between dicots and monocots. Determining the metabolic connection between amino acid metabolisms will help improve our understanding of the metabolic flux, supporting studies on crop nutrition.

Journal ArticleDOI
TL;DR: It is shown that epigenetic memory serves as a mechanism of plant adaptation to a rapidly changing environment and, in particular, to aggressive biotic and abiotic stresses and a deep understanding of this mechanism could serve to elaborate more effective and safe approaches to plant protection.
Abstract: Unlike animals, plants are immobile and could not actively escape the effects of aggressive environmental factors, such as pathogenic microorganisms, insect pests, parasitic plants, extreme temperatures, drought, and many others. To counteract these unfavorable encounters, plants have evolved very high phenotypic plasticity. In a rapidly changing environment, adaptive phenotypic changes often occur in time frames that are too short for the natural selection of adaptive mutations. Probably, some kind of epigenetic variability underlines environmental adaptation in these cases. Indeed, isogenic plants often have quite variable phenotypes in different habitats. There are examples of successful "invasions" of relatively small and genetically homogenous plant populations into entirely new habitats. The unique capability of quick environmental adaptation appears to be due to a high tendency to transmit epigenetic changes between plant generations. Multiple studies show that epigenetic memory serves as a mechanism of plant adaptation to a rapidly changing environment and, in particular, to aggressive biotic and abiotic stresses. In wild nature, this mechanism underlies, to a very significant extent, plant capability to live in different habitats and endure drastic environmental changes. In agriculture, a deep understanding of this mechanism could serve to elaborate more effective and safe approaches to plant protection.

Journal ArticleDOI
TL;DR: This review assesses the importance, impact, and mitigation strategies of climate change driven interactions between biotic and abiotic stresses in forestry and builds on models previously used to curb individual stresses.
Abstract: Plants encounter several biotic and abiotic stresses, usually in combination. This results in major economic losses in agriculture and forestry every year. Climate change aggravates the adverse effects of combined stresses and increases such losses. Trees suffer even more from the recurrence of biotic and abiotic stress combinations owing to their long lifecycle. Despite the effort to study the damage from individual stress factors, less attention has been given to the effect of the complex interactions between multiple biotic and abiotic stresses. In this review, we assess the importance, impact, and mitigation strategies of climate change driven interactions between biotic and abiotic stresses in forestry. The ecological and economic importance of biotic and abiotic stresses under different combinations is highlighted by their contribution to the decline of the global forest area through their direct and indirect roles in forest loss and to the decline of biodiversity resulting from local extinction of endangered species of trees, emission of biogenic volatile organic compounds, and reduction in the productivity and quality of forest products and services. The abiotic stress factors such as high temperature and drought increase forest disease and insect pest outbreaks, decrease the growth of trees, and cause tree mortality. Reports of massive tree mortality events caused by "hotter droughts" are increasing all over the world, affecting several genera of trees including some of the most important genera in plantation forests, such as Pine, Poplar, and Eucalyptus. While the biotic stress factors such as insect pests, pathogens, and parasitic plants have been reported to be associated with many of these mortality events, a considerable number of the reports have not taken into account the contribution of such biotic factors. The available mitigation strategies also tend to undermine the interactive effect under combined stresses. Thus, this discussion centers on mitigation strategies based on research and innovation, which build on models previously used to curb individual stresses.

Journal ArticleDOI
TL;DR: The results indicated that the pretreatment with rhizobacterial consortia increased resistance of the rice plants towards the common foliar pathogen like R. solani AG1-IA, which supports the idea of the application of plant growth-promoting rhizOBacterial consortsia in sustainable crop practice through the management of biotic stress under field conditions.
Abstract: A total of 120 rhizobacteria were isolated from seven different tea estates of Darjeeling, West Bengal, India. Based on a functional screening of in vitro plant growth-promoting (PGP) activities, thirty potential rhizobacterial isolates were selected for in-planta evaluation of PGP activities in rice and maize crops. All the thirty rhizobacterial isolates were identified using partial 16S rRNA gene sequencing. Out of thirty rhizobacteria, sixteen (53.3%) isolates belong to genus Bacillus, five (16.6%) represent genus Staphylococcus, three (10%) represent genus Ochrobactrum, and one (3.3%) isolate each belongs to genera Pseudomonas, Lysinibacillus, Micrococcus, Leifsonia, Exiguobacterium, and Arthrobacter. Treatment of rice and maize seedlings with these thirty rhizobacterial isolates resulted in growth promotion. Besides, rhizobacterial treatment in rice triggered enzymatic [ascorbate peroxidase (APX), catalase (CAT), chitinase, and phenylalanine ammonia-lyase (PAL)], and non-enzymatic [proline and polyphenolics] antioxidative defense reactions indicating their possible role in the reduction of reactive oxygen species (ROS) burden and thereby priming of plants towards stress mitigation. To understand such a possibility, we tested the effect of rhizobacterial consortia on biotic stress tolerance of rice against necrotrophic fungi, Rhizoctonia solani AG1-IA. Our results indicated that the pretreatment with rhizobacterial consortia increased resistance of the rice plants towards the common foliar pathogen like R. solani AG1-IA. This study supports the idea of the application of plant growth-promoting rhizobacterial consortia in sustainable crop practice through the management of biotic stress under field conditions.

Journal ArticleDOI
TL;DR: Sixty-one cucumber WRKY genes were identified, and insight into their classification, evolution, and expression patterns was gained, providing a better understanding of the function of CsWRKY genes in improving abiotic and biotic stress resistance in cucumber.
Abstract: Cucumber (Cucumis sativus L.) is an economically important vegetable crop species. However, it is susceptible to various abiotic and biotic stresses. WRKY transcription factors play important roles in plant growth and development, particularly in the plant response to biotic and abiotic stresses. However, little is known about the expression pattern of WRKY genes under different stresses in cucumber. In the present study, an analysis of the new assembly of the cucumber genome (v3.0) allowed the identification of 61 cucumber WRKY genes. Phylogenetic and synteny analyses were performed using related species to investigate the evolution of the cucumber WRKY genes. The 61 CsWRKYs were classified into three main groups, within which the gene structure and motif compositions were conserved. Tissue expression profiles of the WRKY genes demonstrated that 24 CsWRKY genes showed constitutive expression (FPKM > 1 in all samples), and some WRKY genes showed organ-specific expression, suggesting that these WRKYs might be important for plant growth and organ development in cucumber. Importantly, analysis of the CsWRKY gene expression patterns revealed that five CsWRKY genes strongly responded to both salt and heat stresses, 12 genes were observed to be expressed in response to infection from downy mildew and powdery mildew, and three CsWRKY genes simultaneously responded to all treatments analysed. Some CsWRKY genes were observed to be induced/repressed at different times after abiotic or biotic stress treatment, demonstrating that cucumber WRKY genes might play different roles during different stress responses and that their expression patterns vary in response to stresses. Sixty-one WRKY genes were identified in cucumber, and insight into their classification, evolution, and expression patterns was gained in this study. Responses to different abiotic and biotic stresses in cucumber were also investigated. Our results provide a better understanding of the function of CsWRKY genes in improving abiotic and biotic stress resistance in cucumber.

Journal ArticleDOI
TL;DR: In this paper, a plant aggrephagy receptor, NEIGHBOR OF BRCA1 (NBR1), was found to be essential for the heat-induced formation of autophagic vesicles.
Abstract: Aggrephagy, a type of selective autophagy that sequesters protein aggregates for degradation in the vacuole, is an important protein quality control mechanism, particularly during cell stress. In mammalian cells, aggrephagy and several other forms of selective autophagy are mediated by dedicated cargo receptors such as NEIGHBOR OF BRCA1 (NBR1). Although plant NBR1 homologs have been linked to selective autophagy during biotic stress, it remains unclear how they impact selective autophagy under non-stressed and abiotic stress conditions. Through microscopic and biochemical analysis of nbr1 mutants expressing autophagy markers and an aggregation-prone reporter, we tested the connection between NBR1 and aggrephagy in Arabidopsis. Although NBR1 is not essential for general autophagy, or for the selective clearance of peroxisomes, mitochondria, or the ER, we found that NBR1 is required for the heat-induced formation of autophagic vesicles. Moreover, cytoplasmic puncta containing aggregation-prone proteins, which were rarely observed in wild-type plants, were found to accumulate in nbr1 mutants under both control and heat stress conditions. Given that NBR1 co-localizes with these cytoplasmic puncta, we propose that Arabidopsis NBR1 is a plant aggrephagy receptor essential for maintaining proteostasis under both heat stress and non-stress conditions.

Journal ArticleDOI
TL;DR: In this article, the authors summarized the signal functions of reactive oxygen species (ROS) in plant growth, development and defence against abiotic and biotic stress in Arabidopsis (Arabidopsis thaliana).
Abstract: Reactive oxygen species (ROS) are well known for their dual functions in plants. On the one hand, ROS were once thought to be harmful to plants because their excessive accumulation might lead to oxidative stress and cause cell injury in severe cases. On the other hand, a timely and appropriate burst of ROS acts as an important signal for plant growth, development and defence against environmental stress. ROS are common molecules in various plant metabolic processes and can be generated almost anywhere in plant cells. NADPH oxidase located on the plasma membrane, also known as the RBOH protein, provides a very important ROS synthesis pathway. This article briefly summarizes the signal functions of ROS, especially RBOH-dependent ROS, in plant growth, development and defence against abiotic and biotic stress in Arabidopsis (Arabidopsis thaliana).

Journal ArticleDOI
TL;DR: Their role in phytoremediation of heavy metal stress and whole genomic analysis based on an understanding of different metabolic pathways these endophytes utilize to combat stress is discussed.
Abstract: Endophytic microbes are present in nearly all of the plant species known to date but how they enter and flourish inside a host plant and display multiple benefits like plant growth promotion (PGP), biodegradation, and stress alleviation are still unexplored. Until now, the majority of the research has been conducted assuming that the host-endophyte interaction is analogous to the PGP microbes, although, studies related to the mechanisms of their infection, colonization as well as conferring important traits to the plants are limited. It would be fascinating to explore the role of these endophytic microbes in host gene expression, metabolism, and the modulation of phenotypic traits, under abiotic and biotic stress conditions. In this review, we critically focused on the following areas: (i) endophytic lifestyle and the mechanism of their entry into plant tissues, (ii) how endophytes modulate the immune system of plants and affect the genotypic and phenotypic expression of host plants under abiotic and biotic stress condition, and (iii) the role of omics and other integrated genomic approaches in unraveling complex host-endophyte signaling crosstalk. Furthermore, we discussed their role in phytoremediation of heavy metal stress and whole genomic analysis based on an understanding of different metabolic pathways these endophytes utilize to combat stress.

Journal ArticleDOI
TL;DR: How plants can employ GABA's versatility to effectively deal with all the major biotic stressors, and how GABA can shape plant immune responses against pathogens by modulating reactive oxygen species balance in invaded plant tissues are discussed.
Abstract: The entanglement between primary metabolism regulation and stress responses is a puzzling and fascinating theme in plant sciences. Among the major metabolites found in plants, γ-aminobutyric acid (GABA) fulfils important roles in connecting C and N metabolic fluxes through the GABA shunt. Activation of GABA metabolism is known since long to occur in plant tissues following biotic stresses, where GABA appears to have substantially different modes of action towards different categories of pathogens and pests. While it can harm insects thanks to its inhibitory effect on the neuronal transmission, its capacity to modulate the hypersensitive response in attacked host cells was proven to be crucial for host defences in several pathosystems. In this review, we discuss how plants can employ GABA's versatility to effectively deal with all the major biotic stressors, and how GABA can shape plant immune responses against pathogens by modulating reactive oxygen species balance in invaded plant tissues. Finally, we discuss the connections between GABA and other stress-related amino acids such as BABA (β-aminobutyric acid), glutamate and proline.

Journal ArticleDOI
TL;DR: Recent developments in understanding the epigenetic processes and elements—such as DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs—involved in plant responses to abiotic and biotic stresses in wheat and barley are provided.
Abstract: Environmental stresses such as salinity, drought, heat, freezing, heavy metal and even pathogen infections seriously threaten the growth and yield of important cereal crops including wheat and barley. There is growing evidence indicating that plants employ sophisticated epigenetic mechanisms to fine-tune their responses to environmental stresses. Here, we provide an overview of recent developments in understanding the epigenetic processes and elements-such as DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs-involved in plant responses to abiotic and biotic stresses in wheat and barley. Potentials of exploiting epigenetic variation for the improvement of wheat and barley are discussed.

Journal ArticleDOI
TL;DR: A thorough analysis of recent reports on small‐molecule modulation of ABA signaling is provided and the challenges and prospects in the chemical manipulation of Aba signaling for the development of A BA‐based agrochemicals are discussed.
Abstract: The phytohormone abscisic acid (ABA) is the best-known stress signaling molecule in plants. ABA protects sessile land plants from biotic and abiotic stresses. The conserved pyrabactin resistance/pyrabactin resistance-like/regulatory component of ABA receptors (PYR/PYL/RCAR) perceives ABA and triggers a cascade of signaling events. A thorough knowledge of the sequential steps of ABA signaling will be necessary for the development of chemicals that control plant stress responses. The core components of the ABA signaling pathway have been identified with adequate characterization. The information available concerning ABA biosynthesis, transport, perception, and metabolism has enabled detailed functional studies on how the protective ability of ABA in plants might be modified to increase plant resistance to stress. Some of the significant contributions to chemical manipulation include ABA biosynthesis inhibitors, and ABA receptor agonists and antagonists. Chemical manipulation of key control points in ABA signaling is important for abiotic and biotic stress management in agriculture. However, a comprehensive review of the current knowledge of chemical manipulation of ABA signaling is lacking. Here, a thorough analysis of recent reports on small-molecule modulation of ABA signaling is provided. The challenges and prospects in the chemical manipulation of ABA signaling for the development of ABA-based agrochemicals are also discussed.

Journal ArticleDOI
TL;DR: It is clear that plant TLPs are promising candidates for breeding purposes and for plant transformation aiming at a better performance under biotic and abiotic stresses, and applications derived from TLP molecules are still beyond their potential, as it is evident in the review.
Abstract: Thaumatin-like proteins (TLPs) are a highly complex protein family associated with host defense and developmental processes in plants, animals, and fungi. They are highly diverse in angiosperms, for which they are classified as the PR-5 (Pathogenesis-Related-5) protein family. In plants, TLPs have a variety of properties associated with their structural diversity. They are mostly associated with responses to biotic stresses, in addition to some predicted activities under drought and osmotic stresses. The present review covers aspects related to the structure, evolution, gene expression, and biotechnological potential of TLPs. The efficiency of the discovery of new TLPs is below its potential, considering the availability of omics data. Furthermore, we present an exemplary bioinformatics annotation procedure that was applied to cowpea (Vigna unguiculata) transcriptome, including libraries of two tissues (root and leaf), and two stress types (biotic/abiotic) generated using different sequencing approaches. Even without using genomic sequences, the pipeline uncovered 56 TLP candidates in both tissues and stresses. Interestingly, abiotic stress (root dehydration) was associated with a high number of modulated TLP isoforms. The nomenclature used so far for TLPs was also evaluated, considering TLP structure and possible functions identified to date. It is clear that plant TLPs are promising candidates for breeding purposes and for plant transformation aiming a better performance under biotic and abiotic stresses. The development of new therapeutic drugs against human fungal pathogens also deserves attention. Despite that, applications derived from TLP molecules are still below their potential, as it is evident in our review.

Journal ArticleDOI
TL;DR: In this paper, a review of the state of the art of thermography applied to the detection of biotic stress is presented, focusing on the most important abiotic stress factors affecting the measurements and practical issues that need to be considered in order to implement this technique, particularly at the field scale.
Abstract: In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale.

Journal ArticleDOI
TL;DR: Systematizing the observed changes in terpene quantity and quality in the three most important forest-forming conifer genera of European temperate climate zone emphasizes a complex function of these interesting compounds in trees including interplant signaling in forest communities.

Journal ArticleDOI
TL;DR: This review summarizes the composition and classification of MAPK cascades in horticultural plants and recent research on this cascade in responses to abiotic stresses and biotic stresses, and discusses the most advanced research themes related to plant MAPK cascade functions.
Abstract: The mitogen-activated protein kinase (MAPK) cascade is a highly conserved signaling transduction module that transduces extracellular stimuli into intracellular responses in plants. Early studies of plant MAPKs focused on their functions in model plants. Based on the results of whole-genome sequencing, many MAPKs have been identified in horticultural plants, such as tomato and apple. Recent studies revealed that the MAPK cascade also plays crucial roles in the biotic and abiotic stress responses of horticultural plants. In this review, we summarize the composition and classification of MAPK cascades in horticultural plants and recent research on this cascade in responses to abiotic stresses (such as drought, extreme temperature and high salinity) and biotic stresses (such as pathogen infection). In addition, we discuss the most advanced research themes related to plant MAPK cascades, thus facilitating research on MAPK cascade functions in horticultural plants.

Journal ArticleDOI
TL;DR: Accumulating evidence that hormone signaling plays critical roles in regulating autophagy and plant stress responses is discussed, although the molecular mechanisms by which this occurs are often not clear.
Abstract: Autophagy is a conserved recycling process in which cellular components are delivered to and degraded in the vacuole/lysosome for reuse. In plants, it assists in responding to dynamic environmental conditions and maintaining metabolite homeostasis under normal or stress conditions. Under stress, autophagy is activated to remove damaged components and to recycle nutrients for survival, and the energy sensor kinases target of rapamycin (TOR) and SNF-related kinase 1 (SnRK1) are key to this activation. Here, we discuss accumulating evidence that hormone signaling plays critical roles in regulating autophagy and plant stress responses, although the molecular mechanisms by which this occurs are often not clear. Several hormones have been shown to regulate TOR activity during stress, in turn controlling autophagy. Hormone signaling can also regulate autophagy gene expression, while, reciprocally, autophagy can regulate hormone synthesis and signaling pathways. We highlight how the interplay between major energy sensors, plant hormones, and autophagy under abiotic and biotic stress conditions can assist in plant stress tolerance.

Journal ArticleDOI
TL;DR: This review summarized the structural characteristic and distribution of BRs in plants, role in postharvest technology, biotic stress tolerance, improving resistance against pesticide, organic pollutant toxicity and nodule formation and mycorrhization.
Abstract: Brassinosteroids (BRs) are steroid hormones that are essential for plant growth and development. These hormones control the division, elongation and differentiation of various cell types throughout the entire plant life cycle. Over the past few decades, studies on BRs caught the attention of plant scientists due to their versatile ability in mitigating various environmental stresses. Additionally, BR also involved in maintaining the quality of postharvest produces, by enhancing their resistance against abiotic and biotic stress. Furthermore, BRs are non-toxic and eco-friendly; this aids its importance in coping with adverse environmental conditions without disturbing the balance of the ecosystem. Our review summarized the structural characteristic and distribution of BRs in plants, role in postharvest technology, biotic stress tolerance, improving resistance against pesticide, organic pollutant toxicity and nodule formation and mycorrhization. This review provides useful information on BRs and its effects on plant system that we believe could be useful in maintaining environmental sustainability.