scispace - formally typeset
Search or ask a question

Showing papers on "Fish migration published in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors examined anadromous fish restoration programs on three large Atlantic Coast rivers, the Susquehanna, Connecticut, and Merrimack with multiple main-stem hydropower dams, most with relatively low generating capacity.
Abstract: Globally, diadromous species are at risk from fragmentation by damming of rivers, and a host of other anthropogenic factors. On the United States Atlantic Coast, where diadromous fish populations have undergone dramatic declines, restoration programs based on fishway construction and hatcheries have sustained remnant populations, but large-scale restoration has not been achieved. We examine anadromous fish restoration programs on three large Atlantic Coast rivers, the Susquehanna, Connecticut, and Merrimack with multiple mainstem hydropower dams, most with relatively low generating capacity. Mean passage efficiencies through fishways on these rivers from the first dam to the spawning grounds for American shad are less than 3%. The result is that only small fractions of targeted fish species are able to complete migrations. It may be time to admit failure of fish passage and hatchery-based restoration programs and acknowledge that significant diadromous species restoration is not possible without dam removals. The approach being employed on the Penobscot River, where dams are being removed or provided the opportunity to increase power generation within a plan to provide increased access to habitat, offers a good model for restoration. Dammed Atlantic Coastal rivers offer a cautionary tale for developing nations intent on hydropower development, suggesting that lasting ecosystem-wide impacts cannot be compensated for through fish passage and hatchery technology.

155 citations


Journal ArticleDOI
TL;DR: Ecosystem-based fishery management efforts that seek to balance trade-offs between fisheries and ecosystem processes supported by salmon should assess the importance of life-history variation, particularly in phenological traits, for maintaining important ecosystem functions, such as providing marine-derived resources for terrestrial predators and scavengers.
Abstract: When resources are spatially and temporally variable, consumers can increase their foraging success by moving to track ephemeral feeding opportunities as these shift across the landscape; the best examples derive from herbivore– plant systems, where grazers migrate to capitalize on the seasonal waves of vegetation growth. We evaluated whether analogous processes occur in watersheds supporting spawning sockeye salmon (Oncorhynchus nerka), asking whetherseasonalactivitiesofpredatorsandscavengersshiftspatialdistributions to capitalize on asynchronous spawning among populations of salmon. Both glaucous-winged gulls and coastal brown bears showed distinct shifts in their spatial distributions over the course of the summer, reflecting the shifting distribution of spawning sockeye salmon, which was associated with variation in water temperature among spawning sites. By tracking the spatial and temporal variation in the phenology of their principal prey, consumers substantially extendedtheir foragingopportunityon a superabundant, yet locallyephemeral, resource. Ecosystem-based fishery management efforts that seek to balance trade-offs between fisheries and ecosystem processes supported by salmon should, therefore, assess the importance of life-history variation, particularly in phenological traits, for maintaining important ecosystem functions, such as providing marine-derived resources for terrestrial predators and scavengers.

118 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identified and surveyed 335 artificial barriers that hinder fish migration to 74.5% of the upstream habitat of the island stream in Puerto Rico and found that barriers 2 meters (m) high restricted nongoby fish migration and extirpated those fish upstream of 4m barriers.
Abstract: Habitat connectivity is vital to the persistence of migratory fishes. Native tropical island stream fish assemblages composed of diadromous species require intact corridors between ocean and riverine habitats. High dams block fish migration, but low-head artificial barriers are more widespread and are rarely assessed for impacts. Among all 46 drainages in Puerto Rico, we identified and surveyed 335 artificial barriers that hinder fish migration to 74.5% of the upstream habitat. We also surveyed occupancy of native diadromous fishes (Anguillidae, Eleotridae, Gobiidae, and Mugilidae) in 118 river reaches. Occupancy models demonstrated that barriers 2 meters (m) high restricted nongoby fish migration and extirpated those fish upstream of 4-m barriers. Gobies are adapted to climbing and are restricted by 12-m barriers and extirpated upstream of 32-m barriers. Our findings quantitatively illustrate the extensive impact of low-head structures on island stream fauna and provide guidance for natural resource management, habitat restoration, and water development strategies.

86 citations


Journal ArticleDOI
TL;DR: A review of the recent history of salmon in the Arctic and various patterns of climate change that may influence range expansions and future sustainability in Arc- tic habitats is given in this article, along with a summary of the research needs that will allow informed expectation of further Arctic coloniza- tion by salmon.
Abstract: In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine hab- itats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada's Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960's. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada's Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback pro- cesses contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arc- tic habitats. A summary of the research needs that will allow informed expectation of further Arctic coloniza- tion by salmon is given.

80 citations


Journal ArticleDOI
TL;DR: Sedgeunkedunk Stream, a third-order tributary to the Penobscot River, Maine, historically supported several anadromous fishes, including the Atlantic Salmon Salmo salar, Alewife Alosa pseudoharengus, and Sea Lamprey Petromyzon marinus as discussed by the authors.
Abstract: Sedgeunkedunk Stream, a third-order tributary to the Penobscot River, Maine, historically supported several anadromous fishes, including the Atlantic Salmon Salmo salar, Alewife Alosa pseudoharengus, and Sea Lamprey Petromyzon marinus. However, two small dams constructed in the 1800s reduced or eliminated spawning runs entirely. In 2009, efforts to restore marine–freshwater connectivity in the system culminated with removal of the lowermost dam, thus providing access to an additional 4.6 km of lotic habitat. Because Sea Lampreys utilized accessible habitat prior to dam removal, they were chosen as a focal species with which to quantify recolonization. During spawning runs of 2008–2011 (before and after dam removal), individuals were marked with PIT tags and their activity was tracked with daily recapture surveys. Open-population mark–recapture models indicated a fourfold increase in the annual abundance of spawning-phase Sea Lampreys, with estimates rising from 59±4 () before dam removal (2008) t...

57 citations


Journal ArticleDOI
TL;DR: Results suggest that context-dependent behaviors are common during fish migrations, and that diel activity patterns vary with the degree of effort or predation risk required for movement.
Abstract: Variability is a hallmark of animal behavior and the degree of variability may fluctuate in response to environmental or biological gradients. For example, diel activity patterns during reproductive migrations often differ from those in non-breeding habitats, reflecting trade-offs among efficient route selection, reproductive phenology, and risk avoidance. In this study, we tested the hypothesis that diel movements of anadromous fishes differ among freshwater migration habitats. We analyzed diel movement data from ~13 000 radio-, PIT-, and acoustic-tagged adult fishes from five Columbia River species: Chinook salmon, Oncorhynchus tshawytscha; sockeye salmon, O. nerka; steelhead, O. mykiss; Pacific lamprey, Entosphenus tridentatus; and American shad, Alosa sapidissima. All five species were active during most of the diel cycle in low-gradient, less hydraulically complex reservoir and riverine habitats. Movement shifted to predominantly diurnal (salmonids and American shad) or nocturnal (Pacific lamprey) at hydroelectric dam fishways where hydraulic complexity and predator density were high. Results suggest that context-dependent behaviors are common during fish migrations, and that diel activity patterns vary with the degree of effort or predation risk required for movement.

56 citations


Journal ArticleDOI
TL;DR: In this article, a 10-year dataset of bottom trawled data from the Chesapeake Bay was used to evaluate drivers of demersal fish community structure in the United States.
Abstract: Large-scale research on the environmental, biological, and anthropogenic drivers of fish distributions, abundances, and community structure can identify patterns and trends within systems, provide mechanistic insight into ecosystem functioning, and contribute to ecosystembased fisheries management. This study synthesized 10 yr of extensive fisheries-independent bottom trawl data (2002 to 2011) to evaluate drivers of demersal fish community structure in Chesapeake Bay, the largest estuary in the United States. Changes in community composition were assessed using constrained correspondence analysis. Also, aggregate community metrics (species richness, Simpson diversity, and catch-per-unit-effort [CPUE] of species groups) were modeled using generalized additive models. Five species (Atlantic croaker, white perch, spot, striped bass, and summer flounder) accounted for >75% of the total trawled biomass. The demersal fish community was primarily structured by the latitudinal salinity gradient that largely differentiated anadromous fishes from coastal shelf spawning species and elasmobranchs, with low overall CPUE and richness in mesohaline waters. Low dissolved oxygen concentrations (below ~4 mg l−1) greatly suppressed CPUE and diversity metrics and appeared to displace fish biomass toward the northern and southern edges of the bay’s mainstem channel. Water temperature and month strongly influenced the seasonal dynamics of community composition and metrics. Community composition and biomass shifted after 2007, with a substantial decline in annual CPUE of some species groups. Recruitment and fishing indices for the dominant species were the best predictors of the interannual patterns in community metrics, outperforming various other climatic and biological annual-scale covariates.

52 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared the functionality of three nature-oriented fish passes as compensatory habitats and migration corridors for fishes and found that they provided key habitats for juvenile, small and rheophilic fishes that are typically underrepresented in highly modified water bodies.
Abstract: The introduction of weirs into stream ecosystems resulted in modifications of serial continuity and in the decline of riverine fish species. Successful river restoration requires information on the ecological functionality of fish bypass channels that are considered an ecological improvement according to the European Water Framework Directive. In this study, we compared the functionality of three nature-oriented fish passes as compensatory habitats and migration corridors for fishes. Fish passes differed significantly from upstream and downstream reaches of the weirs, revealing higher current speed, lower water depth, smaller channel width and greater habitat variability. Following these structural differences, they provided key habitats for juvenile, small and rheophilic fishes that are typically underrepresented in highly modified water bodies. All fish passes were used as migration corridors, with increased fish movements during high discharge and at spawning periods. Because river stretches with high variability of current speed and water depth are scarce in highly modified water bodies, fish passes can play an important role as compensatory habitats and should thus be considered more intensively in habitat assessments and river restoration. Ideally, fish bypasses should mirror the natural discharge dynamics and consider all occurring fish species and sizes. Copyright © 2011 John Wiley & Sons, Ltd.

51 citations


Journal ArticleDOI
TL;DR: In this article, the migratory response and behaviour of catadromous Australian bass with regard to hourly mean river flows and water temperatures was assessed over 15 months, using a 75-km passive acoustic telemetry array in the regulated Shoalhaven River below Tallowa Dam.
Abstract: The migratory response and behaviour of catadromous Australian bass with regard to hourly mean river flows and water temperatures was assessed over 15 months. Fish movement was assessed using a 75-km passive acoustic telemetry array in the regulated Shoalhaven River below Tallowa Dam, NSW, Australia. The majority (62%) of downstream pre-spawning migrations from freshwater to estuarine habitats were stimulated by a series of flow pulses from April to September, but a proportion of fish (38%) commenced downstream migrations under regulated baseflow conditions after a sustained decrease in water temperature to below 15°C in late autumn. Equal numbers of fish undertook post-spawning upstream return migrations during flow pulses and during regulated baseflow conditions, with regulated baseflow migrants exhibiting a preference for dusk–dawn passage through freshwater pool–riffle sequences. The median magnitude of flow pulses at the time of commencement of downstream and upstream freshwater migrations by Australian bass was not large, equivalent to natural (in the absence of river regulation) flows equalled or exceeded for 56% and 48% of time, respectively. There was no evidence for increased numbers of migrants with increasing flow pulse magnitude, with individual fish ignoring some flow pulses but responding to subsequent events. In regulated rivers, the release of more frequent flow pulses with peak magnitudes approximating the natural 50th flow duration percentile may be more effective in stimulating greater numbers of Australian bass to undertake pre-spawning and post-spawning migrations between freshwater and estuarine habitats than the release of a single, larger event. The propensity of Australian bass to also undertake spawning migrations under regulated baseflow conditions emphasizes the need for provision of baseflow regimes in regulated rivers that can facilitate migrations by large bodied fishes. Copyright © 2011 John Wiley & Sons, Ltd.

46 citations


Journal ArticleDOI
TL;DR: To counteract oceanic effects, river flow management represented the sole potential force to reduce the extinction probability of Atlantic salmon populations in Southern Europe, although this might not impede changes in migration life history.
Abstract: Facing climate change (CC), species are prone to multiple modifications in their environment that can lead to extinction, migration or adaptation. Identifying the role and interplay of different potential stressors becomes a key question. Anadromous fishes will be exposed to both river and oceanic habitat changes. For Atlantic salmon, the river water temperature, river flow and oceanic growth conditions appear as three main stressing factors. They could act on population dynamics or as selective forces on life-history pathways. Using an individual-based demo-genetic model, we assessed the effects of these factors (1) to compare risks of extinction resulting from CC in river and ocean, and (2) to assess CC effects on life-history pathways including the evolution of underlying genetic control of phenotypic plasticity. We focused on Atlantic salmon populations from Southern Europe for a time horizon of three decades. We showed that CC in river alone should not lead to extinction of Southern European salmon populations. In contrast, the reduced oceanic growth appeared as a significant threat for population persistence. An increase in river flow amplitude increased the risk of local extinction in synergy with the oceanic effects, but river temperature rise reduced this risk. In terms of life-history modifications, the reduced oceanic growth increased the age of return of individuals through plastic and genetic responses. The river temperature rise increased the proportion of sexually mature parr, but the genetic evolution of the maturation threshold lowered the maturation rate of male parr. This was identified as a case of environmentally driven plastic response that masked an underlying evolutionary response of plasticity going in the opposite direction. We concluded that to counteract oceanic effects, river flow management represented the sole potential force to reduce the extinction probability of Atlantic salmon populations in Southern Europe, although this might not impede changes in migration life history.

45 citations


Journal ArticleDOI
TL;DR: Although the proportion of fish that undertook migrations was low, low rates of tag retention in this species likely account for the failure to detect migration by many of the tagged individuals.
Abstract: Understanding the reasons and cues for migration is crucial for developing effective conservation and management strategies of diadromous fishes. Spawning and movement patterns of the threatened diadromous Australian grayling (Prototroctes maraena) were investigated in the Bunyip River, Victoria, using drift sampling (2008–2011) and acoustic telemetry (2009–2010) during the autumn–winter spawning period of each year. Fifty-five adult fish (2009: n = 21; 2010: n = 34) were tagged and released in February ~15–30 km upstream of the Bunyip River estuary. Thirteen fish (2009: n = 7; 2010: n = 6) undertook rapid downstream migrations from March to April to reaches immediately upstream of the estuary. Drifting eggs were detected at multiple sites between April and July; however, the majority (78.8%) were collected in the lower reaches within ~0.5 km of the estuary in early–mid-May. Tagged adult fish arrived in this area 1–4 weeks before eggs were detected and usually moved back upstream within 2 weeks following the peak egg abundance. Downstream migration and peak egg abundance were associated with increased river flows. Although the proportion of fish that undertook migrations was low, low rates of tag retention in this species likely account for the failure to detect migration by many of the tagged individuals.

Journal ArticleDOI
TL;DR: Results indicate that individuals that exclusively inhabited freshwaters had significantly lower muscle fat contents and were more seriously infected with A. crassus than eels that never entered freshwaters, and the importance of brackish waters as eel habitats in temperate latitudes is outlined.

Journal ArticleDOI
TL;DR: Variation in the reaction distances of piscivorous salmonids is more adequately characterized by evaluating important anadromous taxa by measuring response distances of yearling Chinook Salmon and adult Coastal Cutthroat Trout.
Abstract: Visual foraging models provide a useful framework for predicting distribution,foraging success,and predation risk in pelagic communities; however,the visual prey detection capabilities of different predator species within and among taxonomic groups have not been sufficiently evaluated. Our primary objective was to more adequately characterize variation in the reaction distances of piscivorous salmonids by evaluating important anadromous taxa. We measured reaction distances of yearling Chinook Salmon Oncorhynchus tshawytscha and adult Coastal Cutthroat Trout O. clarkii clarkii to fish prey over a range of prey sizes and ecologically relevant light and turbidity levels. Reaction distances of Coastal Cutthroat Trout increased rapidly with increasing light intensity (lx) and attained an average maximum of 187.1 cm above a light threshold of 18.0 lx. Reaction distances of Chinook Salmon increased at a slower rate to a maximum of 122.1 cm above a light threshold of 24.9 lx,declined exponentially with t...

Journal ArticleDOI
TL;DR: Results show that downstream migration occurs between October and May with a peak in March, and suggest that part of the postmetamorphic lampreys start the hematophagous feeding in the river, with a special affinity for anadromous species, probably because of their larger size.
Abstract: The metamorphosis of sea lamprey (Petr- omyzon marinus Linnaeus, 1758) allows young post- metamorphic individuals to migrate to the sea and start the hematophagous feeding. However, the information about this phase is very limited, especially for European populations. Herein, we provide for the first time a comprehensive study on the phenology of downstream migration, the timing and location of first feeding and the prey species in the River Ulla and its estuary (NW Spain). Results show that downstream migration occurs between October and May with a peak in March. At least for a part of the postmeta- morphic lampreys this migration stops for several months when they reach the estuary, where lampreys find shelter and abundant food, before moving to coastal waters. Hematophagous feeding in the estuary allows postmetamorphics to increase their total length and weight exponentially. Our results also suggest that part of the postmetamorphics (10-30%) start the hematophagous feeding in the river, with a special affinity for anadromous species, probably because of their larger size.

Journal ArticleDOI
31 Dec 2013-PLOS ONE
TL;DR: It is suggested that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants and unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification.
Abstract: Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp.) often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T) at four dams over four years. Some spring Chinook salmon (O. tshawytscha) experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss) experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species.

Journal ArticleDOI
TL;DR: The dam removal target often is to facilitate fish migration, but the target has also been assumed to benefit other types of species.
Abstract: Dam removal to restore ecologically impaired rivers is becoming increasingly common. While the target often is to facilitate fish migration, dam removal has also been assumed to benefit other types ...

Journal ArticleDOI
TL;DR: Two recommendations can be made for riverlake migratory fish conservation in the Yangtze floodplain: prolonging the current fishing ban period of AprilJune to AprilSeptember; and opening sluice gates for as long as possible during AprilSeptember in order to maximize the opportunities for fish migration.
Abstract: Over the past few decades, fish resources have declined severely owing to the riverlake disconnection within the Yangtze River floodplain. Studies on fish migrations between rivers and floodplain waters are imperative for fish resources restoration and lake management. However, few studies have as yet documented the migration rhythms of riverlake migratory fishes. Monthly investigations of the fish assemblage structure were conducted in three regions of the Dongting Lake, which is connected to the Yangtze River. Main results were: (i) Fish catches varied greatly, depending on the water level and area of the lake; (ii) Ten riverlake migratoty species were caught during the study, 80% of these during JulyOctober when the water level was high. Species richness and relative abundance both decreased with increasing distance from the river, and the timing of peak abundance occurred later in the year; (iii) Abundance of grass carp (Ctenopharyngodon idella) and silver carp (Hypophthalmichthys molitrix) peaked in July and August and were mainly composed of 0+fishes. The results revealed that the key time for migration into the lake is JulyAugust. Combining the results from previous studies, a comprehensive view is given of migration patterns of four domestic Chinese carps; (iv) Brass gudgeon (Coreius heterodon), appeared to migrate into the Dongting Lake as two separate shoals, differentiated by body size. They also appeared to remain close to the lake mouth area. Based on the above results, two recommendations can be made for riverlake migratory fish conservation in the Yangtze floodplain: prolonging the current fishing ban period of AprilJune to AprilSeptember; and opening sluice gates for as long as possible during AprilSeptember in order to maximize the opportunities for fish migration.

Journal ArticleDOI
05 Apr 2013-PLOS ONE
TL;DR: Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.
Abstract: Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.

Journal ArticleDOI
TL;DR: In this article, the authors measured concentrations of persistent organic pollutants in juvenile Chinook Salmon from various Columbia River stocks and life history types to evaluate the potential for adverse effects in these threatened and endangered fish.
Abstract: Among the populations of Pacific salmon and steelhead Oncorhynchus mykiss (anadromous Rainbow Trout) that inhabit the Columbia River basin there are currently 13 Evolutionarily Significant Units listed as threatened or endangered under the U.S. Endangered Species Act. While habitat loss, dams, overharvest, and climate change have been implicated in declining abundance of Chinook Salmon O. tshawytscha in the Columbia River, chemical contaminants represent an additional, yet poorly understood, conservation threat. In this study we measured concentrations of persistent organic pollutants in juvenile Chinook Salmon from various Columbia River stocks and life history types to evaluate the potential for adverse effects in these threatened and endangered fish. Polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDTs), recognized contaminants of concern in the Columbia basin, are the primary focus of this paper; other contaminants found in these fish, such as polybrominated diphenyl eth...

Journal ArticleDOI
TL;DR: An assessment of the applicability of the Atlantic salmon custom design Illumina iSelect SNP (Single Nucleotide Polymorphisms) array containing 15,225 markers for identification of genetic diversity between sea trout populations demonstrated the applicable of the Salmon 15K SNP-chip for determining the differences between Southern Baltic populations of the sea trout.

DOI
01 Jan 2013
TL;DR: For example, the authors showed that the shelf seas surrounding the British Isles have warmed four times faster than the global average over the last 30 years, leading to changes in demersal fish communities.
Abstract: The story so far The shelf seas surrounding the British Isles have warmed four times faster than the global average over the last 30 years. Recent warm conditions are unlike anything in the last 20,000 years, and warming is highly likely due to human activities linked to the global carbon cycle. Recent warming has caused some cold-water demersal (bottom-dwelling) species to move northwards and into deeper water (e.g. cod, whiting, monkfish), and has caused some warm-water demersal species to become more common or "invade" new areas (e.g. John dory, red mullet). Pelagic (blue-water) species are showing distributional shifts, with mackerel now extending into Icelandic and Faroe Island waters (with consequences for management), sardines and anchovies invading Irish and North Sea environments, and anchovies establishing breeding populations in the southern North Sea. Teasing apart the relative influences of the North Atlantic Oscillation, the Atlantic Multidecadal Oscillation and Global Warming as drivers for these changes is an important challenge. When demersal fish communities are assessed at local scales across the region, 36 of the 50 most common species show a response to warming, with 75% of these increasing in abundance, leading to reorganization of local communities. International commercial landings of species identified as warm-adapted (e.g. grey gurnard, red mullet, hake) have increased 250% in the last 30 years while landings of cold-adapted species (e.g. cod, haddock, whiting) have halved. In warm years, summer spawning fish (e.g. mackerel, horse mackerel) are spawning earlier and further north on the Porcupine Bank. Conversely, spring spawning fish (dab, whiting, lemon sole) are spawning earlier in southern England following cold winters due to females moving further offshore into less preferred but warmer waters. Body size distributions of fish, both within species and across ecosystems, have been affected by climate change as well as fishing. Warm, lower-oxygen conditions favour smaller individuals, and by 2050 weights of fish could be reduced by 14-24%. Declines in salmon are strongly correlated with rising temperatures in oceanic foraging areas, with temperature affecting growth, survival and maturation of salmon at sea. Freshwater temperatures have also increased significantly in the last four decades, with implications for survival of juvenile diadromous fish, including both anadromous (river spawning: salmon, trout, shad) and catadromous (sea spawning: eels and flounder) species. For eels, climatic changes in the spawning areas of the Sargasso Sea are likely impacting reproduction and larval survival. Future predictions: ocean acidification One-third of all anthropogenic CO2 has been absorbed by the oceans, mitigating warming but decreasing the pH. Ocean acidification is occurring faster than any time in the last 300 million years, and is expected to continue through the 21st Century leading to a drop of 0.3 to 0.4 pH units. In addition to compromising calcifying animals, from unicellular algae (e.g. coccolithophores) through to large urchins and bivalve molluscs, ocean acidification is now known to affect fish, with impacts on growth, neurological function, physiology, behaviour and cognitive processing. More work, combining lab studies, long-term multigenerational studies, studies of natural CO2 hotspots and of temperate water fish, and mechanistic modelling is needed to predict the full impacts of ocean acidification on fish. Future predictions: developments in modelling Ocean temperatures are predicted to rise a further 2 to 4 oC during the 21st Century. Predicting impacts of warming in fish communities is complex; and consortia are now using multiple-modelling approaches (ranging from statistical to mechanism-based) that are forced using an ensemble of climate scenarios to predict the range of likely outcomes for fish around the British Isles. Models generally predict poleward (northward) movement of species ranges, leading to substantial losses in availability of traditionally harvested species (e.g. horse mackerel, sole, haddock). Models also predict changes to primary production throughout the British Isles, with southern regions (e.g. Celtic Sea, English Channel) becoming up to 10% more productive, while northern regions (e.g. central and northern North Sea) becoming up to 20% less productive, with obvious implications for the fisheries underpinned by these plankton communities.

Journal ArticleDOI
TL;DR: In this paper, the authors used microsatellite nuclear DNA analysis at 11 loci and mitochondrial DNA control region sequence analyses to estimate the relative contributions of nine Atlantic sturgeon populations and the five distinct population segments to these aggregations using individual-based assignment tests and mixed-stock analysis.
Abstract: The anadromous acipenserid Atlantic sturgeon Acipenser oxyrinchus was listed in 2012 under the U.S. Endangered Species Act as having four endangered and one threatened distinct population segment (DPS) in American waters. Anthropogenic activities outside of natal estuaries, particularly bycatch, may hinder the abilities of some populations to rebuild. Most Atlantic sturgeon are residential for their first 2–6 years within their natal estuaries, whereas older subadults and adults may migrate to non-natal estuaries and coastal locations. Previous studies demonstrated that subadults and adults aggregate during summer at locations in Long Island Sound (LIS) and its tributary, the Connecticut River; however, the population origin of these fish is unknown. Because of its geographic proximity and relatively robust population, we hypothesized that the LIS and Connecticut River aggregations were almost solely derived from the Hudson River. We used microsatellite nuclear DNA analysis at 11 loci and mitochondrial DNA control region sequence analyses to estimate the relative contributions of nine Atlantic sturgeon populations and the five DPS to these aggregations using individual-based assignment tests and mixed-stock analysis. From 64 to 73 % of specimens from LIS were estimated to be of Hudson origin. Similarly, 66–76 % of specimens from the Connecticut River were of Hudson origin. However, moderate numbers of specimens were detected from distant spawning populations in the southeastern DPS and from two populations once thought to be extirpated or nearly so, the James River (6–7.3 %), and the Delaware River (7.6–12 %). Additionally, specimens were detected from all five DPS in both the LIS and Connecticut River collections. These results highlight the difficulty of evaluating the status of individual Atlantic sturgeon populations because of the propensity of subadults and adults to migrate for extended duration to distant sites where they may be vulnerable to anthropogenic disturbances.

Journal ArticleDOI
TL;DR: This study clearly demonstrates the usefulness of the SDM approach to riverine health assessment in situations where undisturbed reference sites do not exist.

Journal ArticleDOI
24 Oct 2013-PLOS ONE
TL;DR: Original data, extracted from historical documents and scientific surveys, related to Russian fisheries in the southeastern part of the Gulf of Finland and its inflowing rivers during the 15- early 20th centuries allowed tracing key trends in fisheries development and in the abundance of major commercial species.
Abstract: The paper describes and analyzes original data, extracted from historical documents and scientific surveys, related to Russian fisheries in the southeastern part of the Gulf of Finland and its inflowing rivers during the 15- early 20th centuries. The data allow tracing key trends in fisheries development and in the abundance of major commercial species. In particular, results showed that, over time, the main fishing areas moved from the middle part of rivers downstream towards and onto the coastal sea. Changes in fishing patterns were closely interrelated with changes in the abundance of exploited fish. Anadromous species, such as Atlantic sturgeon, Atlantic salmon, brown trout, whitefish, vimba bream, smelt, lamprey, and catadromous eel were the most important commercial fish in the area because they were abundant, had high commercial value and were easily available for fishing in rivers. Due to intensive exploitation and other human-induced factors, populations of most of these species had declined notably by the early 20th century and have now lost commercial significance. The last sturgeon was caught in 1996, and today only smelt and lamprey support small commercial fisheries. According to historical sources, catches of freshwater species such as roach, ide, pike, perch, ruffe and burbot regularly occurred, in some areas exceeding half of the total catch, but they were not as important as migrating fish and no clear trends in abundance are apparent. Of documented marine catch, Baltic herring appeared in the 16th century, but did not become commercially significant until the 19th century. From then until now herring have been the dominant catch.

Journal ArticleDOI
TL;DR: Overall, the results demonstrated widespread dispersal in a system with low coho salmon densities, and this might increase the rate of population growth if it reduces the effects of local density dependence.
Abstract: Anadromous fishes are frequently restricted by artificial barriers to movement such as dams and culverts, so measuring dispersal helps identify sites where improved connectivity could promote range expansion and population viability. We used a combination of DNA-based parentage analysis and mark-recapture techniques to evaluate dispersal by juvenile coho salmon (Oncorhynchus kisutch) in a population in the initial stages of colonisation following installation of fish passage structures at a previously impassable dam on the Cedar River, WA, USA. The spatial distribution of individuals within maternal families revealed that dispersal was common. Among the offspring of radio-tagged mothers, 28% were collected outside the spawning reach and dispersed up to 6.3 km (median = 1.5 km). Most juveniles captured in a tributary (Rock Creek, where few adults spawned) had immigrated from the Cedar River and represented many different families. Juvenile dispersal therefore provided a secondary phase of spatial expansion following initial colonisation by adults. Consistent with the condition- dependent dispersal hypothesis, juveniles that dispersed farther upstream in the tributary were larger than fish collected near the tributary mouth. Overall, the results demonstrated widespread dispersal in a system with low coho salmon densities, and this might increase the rate of population growth if it reduces the effects of local density dependence. By implication, juveniles can take advantage of rearing habitats reconnected through barrier removal, even when such areas are located several kilometres from adult breeding grounds.

Journal ArticleDOI
TL;DR: The modern ichthyofauna of the Kara Sea comprises 77 species of marine, anadromous, and freshwater fish from 24 families of 14 orders and 12 fish species are indicated for this region.
Abstract: Based on literature and new actual data from 2007–2012, a revised list of fish species inhabiting the Kara Sea is given. The modern ichthyofauna of the Kara Sea comprises 77 species of marine, anadromous, and freshwater fish from 24 families of 14 orders. For the first time, 12 fish species are indicated for this region.

Journal ArticleDOI
TL;DR: In this article, the authors combined telemetry of anadromous fish with long-term monitoring of Dolly Varden upstream migration timing and environmental data in the Chignik Lakes watershed in Alaska and then compared the timing data with that of other streams where only count data were available.
Abstract: Dolly Varden (Salvelinus malma) are a facultatively anadromous salmonid common around much of the North Pacific Rim, but little is known about the environmental factors affecting the timing and diversity of their migration. We combined telemetry of anadromous fish with long-term monitoring of Dolly Varden upstream migration timing and environmental data in the Chignik Lakes watershed in Alaska and then compared the timing data with that of other streams where only count data were available. Telemetry revealed two upstream migration modes: midsummer and late fall at the Chignik Lakes. Weir counts indicated that timing fluctuated markedly over the monitoring period (1996–2011) and was negatively correlated with June sea surface temperature. The relationship between sea surface temperature and migration timing in other watersheds with long-term records was as follows: negative (Buskin River), positive (Auke Creek), or nonexistent (Goodnews and Kanektok rivers). Among 18 streams and rivers throughout the east...

Journal ArticleDOI
TL;DR: In this paper, the spatial distribution of upstream migrating Atlantic salmon (Salmo salar ) spawners was studied in 2008 and 2009 in the surroundings of the tailrace from a hydropower station in the River Umealven.

Journal ArticleDOI
TL;DR: The use of this particular trap can be recommended for the capture of sea trout for sea lice infection assessments, and estimated infection levels for trout captured by gillnets, which are likely to be underestimated.

Journal ArticleDOI
TL;DR: The genetic structure of salmon populations in this region was relatively stable over a period of 1.5 to 2.5 generations, and changes in the genetic diversity observed were best explained by the increased level of fishing pressure in these populations rather than environmental variation or the negative effects of hatchery escapees.
Abstract: Studies of the temporal patterns of population genetic structure assist in evaluating the consequences of demographic and environmental changes on population stability and persistence. In this study, we evaluated the level of temporal genetic variation in 16 anadromous and 2 freshwater salmon populations from the Western White Sea Basin (Russia) using samples collected between 1995 and 2008. To assess whether the genetic stability was affected by human activity, we also evaluated the effect of fishing pressure on the temporal genetic variation in this region. We found that the genetic structure of salmon populations in this region was relatively stable over a period of 1.5 to 2.5 generations. However, the level of temporal variation varied among geographical regions: anadromous salmon of the Kola Peninsula exhibited a higher stability compared to that of the anadromous and freshwater salmon from the Karelian White Sea coast. This discrepancy was most likely attributed to the higher census, and therefore effective, population sizes of the populations inhabiting the rivers of the Kola Peninsula compared to salmon of the Karelian White Sea coast. Importantly, changes in the genetic diversity observed in a few anadromous populations were best explained by the increased level of fishing pressure in these populations rather than environmental variation or the negative effects of hatchery escapees. The observed population genetic patterns of isolation by distance remained consistent among earlier and more recent samples, which support the stability of the genetic structure over the period studied. Given the increasing level of fishing pressure in the Western White Sea Basin and the higher level of temporal variation in populations exhibiting small census and effective population sizes, further genetic monitoring in this region is recommended, particularly on populations from the Karelian rivers.