scispace - formally typeset
Search or ask a question

Showing papers on "Glycolysis published in 1988"


Journal ArticleDOI
TL;DR: Both the estimated rates of ADP phosphorylation by glycolysis and mitochondria and the estimated rate of ATP hydrolysis by ongoing metabolism were utilized to model the approximate decline in intracellular ATP expected at 15-min exposure to various H2O2 concentrations.

620 citations


Journal ArticleDOI
TL;DR: Results provide the first direct demonstration that the exceptionally high level of hexokinase bound to mitochondria of highly glycolytic tumor cells has preferred access to mitochondrially generated ATP, a finding that may have rather profound metabolic significance for such tumors.

326 citations


Journal ArticleDOI
TL;DR: The anaerobic regulation of the gene encoding pyruvate formate-lyase from Escherichia coli was investigated and it was shown that pfl'-'lacZ expression was partially repressed by nitrate and that this repression was mediated by the narL gene product.
Abstract: The anaerobic regulation of the gene encoding pyruvate formate-lyase from Escherichia coli was investigated. Expression of a pfl9-9lacZ protein fusion demonstrated that the gene is subject to a 12-fold anaerobic induction which can be stimulated a further 2-fold by the addition of pyruvate to the growth medium. Construction of a strain deleted for pfl verified that either pyruvate or a metabolite of glycolysis functions as an inducer of pfl gene expression. Complete anaerobic induction required the presence of a functional fnr gene product. However, the dependence was not absolute since a two- to threefold anaerobic induction could still be observed in an fnr mutant. These results could be confirmed immunologically by analyzing the levels of pyruvate formate-lyase protein present in cells grown under various conditions. It was also shown that pfl9-9lacZ expression was partially repressed by nitrate and that this repression was mediated by the narL gene product. Images

157 citations


Journal ArticleDOI
TL;DR: The present results situate the primary triggering reaction at the level of transport-associated phosphorylation, and the main (= low-affinity) glucose carrier appears to be the receptor while association of the corresponding kinase is needed for induction of the signal.
Abstract: When glucose is added to cells of the yeast Saccharomyces cerevisiae grown on non-fermentable carbon sources, a cAMP signal is induced which triggers a protein phosphorylation cascade. Addition of glucose or fructose to cells of a phosphoglucose isomerase mutant also induced the cAMP signal indicating that metabolization of the sugar beyond the sugar phosphate step is not necessary. Glucose 6-phosphate might stimulate the triggering reaction since induction with fructose shows a significant delay. Experiments with double and triple mutants in hexokinase 1, hexokinase 2 or glucokinase indicated that the presence of one of the three kinases was both necessary and enough for induction of the cAMP signal by glucose and the presence of one of the two hexokinases necessary and enough for induction by fructose. The product of the kinase reaction itself however does not appear to be the trigger of the reaction: when the increase in the level of glucose 6-phosphate and fructose 6-phosphate was measured as a function of time after addition of different glucose concentrations, no correlation was observed with the increase in the cAMP level. From the dependence of the cAMP increase on the external concentration of glucose, a rough estimate was obtained of the Km of the triggering reaction: about 25 mM. This value clearly fits with the Km of the low-affinity glucose carrier (about 20 mM) and differs by at least an order of magnitude from the Km values of the high-affinity glucose carrier and the three kinases. The present results situate the primary triggering reaction at the level of transport-associated phosphorylation. The main (= low-affinity) glucose carrier appears to be the receptor while association of the corresponding kinase is needed for induction of the signal. Since it is known that the presence of the kinases influences the characteristics of sugar transport, no definite conclusion can be given on whether the necessity of the kinases reflects the need for a certain type of transport or the need for phosphorylation of the sugar. The increase in the level of fructose 1,6-bisphosphate, on the other hand, correlated very well with the cAMP increase. However, it clearly lagged behind the cAMP increase, confirming the previously suggested importance of the cAMP signal for the stimulation of glycolytic flux at the level of phosphofructokinase 1.(ABSTRACT TRUNCATED AT 400 WORDS)

140 citations


Journal Article
TL;DR: Differences in rates of glycolysis, ATP production, and the production of certain metabolites may reflect metabolic adaptations associated with the development of drug resistance.
Abstract: Glucose utilization and lactate production have been monitored as a function of time using 13C magnetic resonance spectroscopy and [13C1]-glucose with perfused wild type MCF-7 human breast cancer cells and a drug-resistant (AdrR) cell line derived from them. Compared to wild type cells, AdrR cells exhibited an enhanced (3-fold) rate of glycolysis, indicating an increased demand for ATP production. We have investigated the effects of glucose depletion and azide, an inhibitor of oxidative phosphorylation, on the levels of intracellular phosphates (Pi, ATP) and intracellular pH using 31P magnetic resonance spectroscopy and on the rates of glycolysis. In both cell lines, ATP levels and the rates of glucose utilization and lactate production were invariant in the presence of azide. ATP production, especially in AdrR cells, was highly dependent on active glucose metabolism. The results of these direct measurements confirm that these cells survive by predominantly utilizing glycolysis. Glutamate and myo-inositol were observed in 13C spectra of acid extracts of AdrR but not wild type cells. Both metabolites are potential substrates in drug detoxification. These differences in rates of glycolysis, ATP production, and the production of certain metabolites may reflect metabolic adaptations associated with the development of drug resistance.

130 citations


Journal ArticleDOI
TL;DR: The lactate dehydrogenase M-subunit deficiency does not show any symptoms under ordinary circumstances, but is a latent hereditary disorder, now recognized as a new type of hereditary exertional myoglobinuria.

128 citations


Journal Article
TL;DR: Results derived from chromatographic, polyclonal antibody, and amino acid analysis studies indicate that the predominant rat hepatoma hexokinase species is related most closely to isozymic form(s) of the enzyme commonly referred to as type II, and least related to the liver type IV isozyme (glucokinase).
Abstract: Recent studies from this laboratory have demonstrated that a form of bexokinase characteristic of rapidly growing, highly glycolytic tumor cells is bound to an outer mitochondrial membrane receptor complex containing a M r 35,000 pore protein (D. M. Parry and P. L. Pedersen, J. Biol. Chem., 258: 10904–10912, 1983; R. A. Nakashima, et al. , Biochemistry, 25: 1015–1021, 1986). In new studies reported here the specificity of this receptor complex for binding hexokinase is defined, and a purification scheme is described which leads to a homogeneous and bindable form of the tumor hexokinase. In the AS-30D hepatoma, hexokinase activity is elevated more than 100-fold relative to liver tissue. The relative increase in hexokinase activity is 8 times greater than that of any other glycolytic enzyme. Hexokinase is the only glycolytic enzyme of AS-30D cells to exhibit a mitochondrial/cytoplasmic specific activity ratio greater than 1, showing a 3.5-fold elevation in the mitochondrial fraction. Purification of hexokinase is accomplished by preferential solubilization of the mitochondrial bound enzyme with glucose-6-phosphate, followed by high-performance liquid chromatography on gel permeation and anion exchange columns. The final fraction has a specific activity of 144 units per mg of protein, with a K m for glucose of 0.13 mm and for ATP of 1.4 mm. The purified tumor enzyme migrates as a single species upon sodium dodecyl sulfate: polyacrylamide gel electrophoresis with an apparent molecular weight of 98,000. Significantly, the purified tumor enzyme retains its activity for mitochondrial binding. Additional results derived from chromatographic, polyclonal antibody, and amino acid analysis studies indicate that the predominant rat hepatoma hexokinase species is related most closely to isozymic form(s) of the enzyme commonly referred to as type II, and least related to the liver type IV isozyme (glucokinase).

122 citations


Journal ArticleDOI
01 Dec 1988-Blood
TL;DR: Findings partly explain the previously noted 50- to 100-fold increase in glucose consumption of infected red cells and suggest that further knowledge of these parasite enzymes and their genetic basis may aid both in designing new chemotherapy and in understanding the evolution of these parasites.

121 citations


Journal ArticleDOI
TL;DR: During both glycolysis and gluconeogenesis alternative enzymes are present at various steps to carry out parallel pathways; alternatives are available for utilizing nucleotide triphosphates and pyrophosphate; fructose 2,6-bisphosphate serves as a strong internal regulator; and plants use these cytoplasmic alternatives as they develop and as their environments change.
Abstract: Sung, S.-J. S., Xu, D.-P., Galloway, C. M. and Black, C. C., Jr. 1988. A reassessment of glycolysis and gluconeogenesis in higher plants. - Physiol. Plant. 72: 650–654. Sucrose is the starting point of glycolysis and end point of gluconeogenesis in higher plants. During both glycolysis and gluconeogenesis alternative enzymes are present at various steps to carry out parallel pathways; alternatives are available for utilizing nucleotide triphosphates and pyrophosphate; fructose 2,6-bisphosphate serves as a strong internal regulator; and plants use these cytoplasmic alternatives as they develop and as their environments change.

113 citations


Journal ArticleDOI
TL;DR: The data suggest the existence of ischemia-induced inefficiency in ATP utilization, as demonstrated by the presence of a large contribution to the unidirectional Pi----ATP rate catalyzed by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase.

110 citations


Journal ArticleDOI
TL;DR: It is demonstrated that in pancreatic islets it is possible to dissociate both glycolysis from mitochondrial oxidative events and the oxidation of acetyl residues from their generation rate, and the experimental data suggest that nutrient-responsive and ATP-requiring functional processes exert a feedback control on mitochondrial respiration in this fuel-sensor organ.

Journal ArticleDOI
TL;DR: The addition of glucose to a suspension of yeast initiated glycogen synthesis and ethanol formation and caused a detectable rise in cyclic AMP concentration and a series of cyclic-AMP-dependent effects such as an activation of phosphofructokinase 2 and of trehalase and an increase in the concentration of fructose 2,6-bisphosphate and in the rate of glycolysis.
Abstract: The addition of glucose to a suspension of yeast initiated glycogen synthesis and ethanol formation. Other effects of the glucose addition were a transient rise in the concentration of cyclic AMP and a more prolonged increase in the concentration of hexose 6-monophosphate and of fructose 2,6-bisphosphate. The activity of glycogen synthase increased about 4-fold and that of glycogen phosphorylase decreased 3-5-fold. These changes could be reversed by the removal of glucose from the medium and induced again by a new addition of the sugar. These effects of glucose were also obtained with glucose derivatives known to form the corresponding 6-phosphoester. Similar changes in glycogen synthase and glycogen phosphorylase activity were induced by glucose in a thermosensitive mutant deficient in adenylate cyclase (cdc35) when incubated at the permissive temperature of 26 degrees C, but were much more pronounced at the nonpermissive temperature of 35 degrees C. Under the latter condition, glycogen synthase was nearly fully activated and glycogen phosphorylase fully inactivated. Such large effects of glucose were, however, not seen in another adenylate-cyclase-deficient mutant (cyr1), able to incorporate exogenous cyclic AMP. When a nitrogen source or uncouplers were added to the incubation medium after glucose, they had effects on glycogen metabolism and on the activity of glycogen synthase and glycogen phosphorylase which were directly opposite to those of glucose. By contrast, like glucose, these agents also caused, under most experimental conditions, a detectable rise in cyclic AMP concentration and a series of cyclic-AMP-dependent effects such as an activation of phosphofructokinase 2 and of trehalase and an increase in the concentration of fructose 2,6-bisphosphate and in the rate of glycolysis. Under all experimental conditions, the rate of glycolysis was proportional to the concentration of fructose 2,6-bisphosphate. Uncouplers, but not a nitrogen source, also induced an activation of glycogen phosphorylase and an inactivation of glycogen synthase when added to the cdc35 mutant incubated at the restrictive temperature of 35 degrees C without affecting cyclic AMP concentration.

Journal ArticleDOI
16 Jun 1988-Nature
TL;DR: It is argued that enolase and pyruvate kinase have evolved from a common ancestral multifunctional enzyme which could process phosphoenolpyruvates in both directions along the glycolytic pathway.
Abstract: Enolase or 2-phospho-D-glycerate hydrolase catalyses the dehydration of 2-phosphoglycerate to phosphoenolpyruvate, which in turn is converted by pyruvate kinase to pyruvate. We describe here the crystallographic determination of the structure of yeast enolase at high resolution (2.25 A) and an analysis of the structural homology between enolase, pyruvate kinase and triose phosphate isomerase. Each of the two subunits of enolase forms two distinctive domains. The larger domain (residues 143–420) is a regular 8-fold β/α-barrel, as first found in triose phosphate isomerase, and later in pyruvate kinase and 11 other functionally different enzymes. An analysis of the molecular geometries of enolase and pyruvate kinase based on the roughly 8-fold symmetry of the barrel showed a structural homology better than expected for proteins related by convergent evolution. We argue that enolase and pyruvate kinase have evolved from a common ancestral multifunctional enzyme which could process phosphoenolpyruvate in both directions along the glycolytic pathway. There is structural and sequence evidence that muconate lactonizing enzyme later evolved from enolase.

Journal ArticleDOI
TL;DR: A low threshold of ATP was identified, at best 5-10% of normal, which preserved viability in LLC-PK1 cells despite major loss of membrane phospholipids, and determined the ability of cells to maintain their normally low levels of unesterified fatty acids.
Abstract: This study related ATP levels with membrane damage, lipid abnormalities, and cell death in energy-depleted LLC-PK1 cells. Oxidative phosphorylation was inhibited by antimycin A, and glycolysis was regulated by graded glucose deprivation to achieve stepwise ATP depletion. Over a range of ATP levels down to approximately equal to 5% of normal, over 5 h, cells were altered only minimally, or injured reversibly. Such cells maintained mitochondrial potential, and retained more K+ than cells without an energy source. Over the same duration, cells without an energy source were lethally injured. Treatment with antimycin induced increments of triglycerides and decreases of phospholipids. With severe ATP depletion (approximately equal to 5-10% of normal after 5 h), decrease of phospholipids was marked. Cells in which ATP was not measurable (or was less than 5% of normal) showed comparable phospholipid declines but, in addition, showed massive and progressive increase of unesterified fatty acids. The results identified a low threshold of ATP, at best 5-10% of normal, which preserved viability in LLC-PK1 cells despite major loss of membrane phospholipids. This threshold also determined the ability of cells to maintain their normally low levels of unesterified fatty acids. Failure of energy-dependent mechanisms that normally metabolize unesterified fatty acids may be a correlate of the extent of energy depletion that determines lethal injury.

Journal ArticleDOI
TL;DR: A possible inhibitory effect of CO(2) at the site of action of both phosphofructokinases in the glycolytic pathway could account, at least in part, for the observed reduction in respiration.
Abstract: Mature intact `Bartlett9 pear fruit ( Pyrus communis L.) were stored under a continuous flow of air or air + 10% CO 2 for 4 days at 20°C. Fruit kept under elevated CO 2 concentrations exhibited reduced respiration (O 2 consumption) and ethylene evolution rates, and remained firmer and greener than fruit stored in air. Protein content, fructose 1,6-bisphosphate levels, and ATP:phosphofructokinase and PPi:phosphofructokinase activities declined, while levels of fructose 6-phosphate and fructose 2,6-bisphosphate increased in fruit exposed to air + 10% CO 2 . These results are discussed in light of a possible inhibitory effect of CO 2 at the site of action of both phosphofructokinases in the glycolytic pathway, which could account, at least in part, for the observed reduction in respiration.

Journal ArticleDOI
TL;DR: Control of glycolysis during anoxia was investigated in five organs of the freshwater turtle, Pseudemys scripta, after 1 or 5 h of submergence in N2-bubbled water, and changes in the levels of hexose and triose phosphate intermediates of glyCOlysis indicated an activation and inhibition in brain, heart, and skeletal muscles.
Abstract: Control of glycolysis during anoxia was investigated in five organs (heart, brain, liver, and red and white skeletal muscles) of the freshwater turtle, Pseudemys scripta, after 1 or 5 h of submergence in N2-bubbled water. Lactate was produced as the metabolic end product, with distinct organ differences in the amount (net lactate accumulation was 2.4-fold higher in brain than white muscle) and rate (lactate production in liver dropped 16-fold after the 1st h) of lactate accumulation. ATP and total adenylate contents of all organs were reduced (by 15-32%) after 1 h of submergence, but energy charge was maintained; after 5 h, adenylate contents had fully recovered. Changes in the levels of hexose and triose phosphate intermediates of glycolysis indicated an activation of glycolysis within the 1st h of anoxia exposure in brain, heart, and skeletal muscles. By 5 h, however, these were reversed, and a glycolytic rate depression was indicated, consistent with the overall metabolic rate depression accompanying long-term anaerobiosis in the turtle. Crossover analysis indicated glycolytic control at the pyruvate kinase reaction in all organs during both glycolytic activation and metabolic depression; regulatory control at the phosphofructokinase locus was primarily important only during glycolytic activation in heart and red muscle. The same analysis indicated a very rapid glycolytic inhibition in liver occurring within the 1st h of anoxia exposure; this allows glycogenolysis to be directed toward glucose export yielding the fermentative fuel used by other organs during anoxia.

Journal ArticleDOI
TL;DR: The results demonstrate a link between metabolite changes and free Ca2+ levels in a reconstituted physiological system and support a model in which oscillations in glycolysis and the ATP/ADP ratio may cause oscillation in cytosolicfree Ca2+, beta-cell electrical activity, and insulin release.

Journal ArticleDOI
TL;DR: The analysis showed that the rates of CO2 production from glucose and glutamine were themselves positively correlated, suggesting that the oxidation of the two substrates is coordinately controlled under normal culture conditions.
Abstract: Rates of CO2 production from glucose and glutamine, intracellular metabolite levels, and release of metabolic end products into the culture medium were determined for 13 cultured cell lines, including a glycolysis-defective mutant. All the non-mutant lines synthesized pyruvate, lactate, alanine, proline, aspartate, and citrate, so that the metabolism of glucose and glutamine resulted mainly in the production of these compounds and only to a lesser extent in complete oxidation to CO2. These data and the pattern of metabolites produced by the mutant line were consistent with a model characterized by incomplete glutamine oxidation leading to end product accumulation. Multiple linear regression analysis identified the metabolite levels most highly correlated with the intracellular citrate level and with the amount of citrate released into the medium. The analysis also showed that the rates of CO2 production from glucose and glutamine were themselves positively correlated, suggesting that the oxidation of the two substrates is coordinately controlled under normal culture conditions.

Journal ArticleDOI
TL;DR: The marked changes of metabolic rates and enzyme activities observed at the various phases of the cell cycle suggest that these biochemical events may also serve as suitable parameters for evaluating the response of lymphocytes towards mitogens and lymphokines.
Abstract: Cell-cycle progression of rat thymocytes stimulated with concanavalin A and interleukin 2 was monitored at 12-h intervals by pulse labeling aliquots of the cell culture with [3H]thymidine, by measuring cellular DNA and protein content and by counting the number of cells in the cultures. The cell cycle was completed after 96 h of culture with the S phase peaking at 48 h. Early events in thymocyte activation were enhanced phosphatidylinositol turnover and the induction of ornithine decarboxylase. Concomitant changes were observed in the rates of DNA synthesis and glycolysis accompanied by a 20-fold increase in glucose uptake 48 h after stimulation. However, the maximal increment in the glycolytic rate preceded that of DNA synthesis by 12 h. Apart from the quantitative changes which occurred during the cell-cycle progression, there was also a change from partial aerobic glucose degradation to CO2 (26%) to almost complete anaerobic conversion of glucose to lactate (85%) and less than 3% to CO2. Glycolytic enzyme levels increased fourfold to tenfold and reached their maxima 48 h after mitogenic stimulation. Maximal increments of glycolytic enzyme activities preceded or coincided with the maximal increments of the glycolytic rate. Actinomycin D (1.5 ng/ml) completely inhibited DNA and RNA synthesis but did not show any inhibitory effect either on glycolytic enzyme induction or on enhanced glycolysis. During mitosis and return of the cells to the non-proliferative state, all of the enhanced metabolic rates returned to their initial levels and the elevated enzyme activities were decreased also. The marked changes of metabolic rates and enzyme activities observed at the various phases of the cell cycle suggest that these biochemical events may also serve as suitable parameters for evaluating the response of lymphocytes towards mitogens and lymphokines.

Journal ArticleDOI
TL;DR: In this paper, the effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin were investigated in the isolated, incubated soleus muscle of the rat.
Abstract: 1. The effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin were investigated in the isolated, incubated soleus muscle of the rat. 2. Hypothyroidism, which was induced by administration of propylthiouracil to the rats, decreased fasting plasma levels of free fatty acids and increased plasma levels of glucose but did not significantly change plasma levels of insulin. 3. The sensitivity of the rates of glycogen synthesis to insulin was increased at physiological, but decreased at supraphysiological, concentrations of insulin. 4. The rates of glycolysis in the hypothyroid muscles were decreased at all insulin concentrations studied and the EC50 for insulin was increased more than 8-fold; the latter indicates decreased sensitivity of this process to insulin. However, at physiological concentrations of insulin, the rates of glucose phosphorylation in the soleus muscles of hypothyroid rats were not different from controls. This suggests that hypothyroidism affects glucose metabolism in muscle not by affecting glucose transport but by decreasing the rate of glucose 6-phosphate conversion to lactate and increasing the rate of conversion of glucose 6-phosphate to glycogen. 5. The rates of glucose oxidation were decreased in the hypothyroid muscles at all insulin concentrations.

Journal Article
TL;DR: A new classification into axonal ataxias, multiple system degenerations, and ataxic encephalopathies may be easier to relate to the pathophysiology, as well as a number of well-known neurodegenerative disorders.

Journal ArticleDOI
TL;DR: Evidence of a functional dissociation between energy dissipation at the plasma membrane and mitochondrial synthesis of adenosine triphosphate is indicated, indicating the vulnerability of glia at low levels of blood glucose and the contribution of glial dysfunction to development of hypoglycaemic encephalopathy.

Journal ArticleDOI
TL;DR: In hepatocytes from overnight-fasted rats incubated with glucose, palmitate decreased the production of lactate, the detritiation of [2-3H]- and [3- 3H]-glucose, and the concentration of fructose 2,6-bisphosphate.
Abstract: In hepatocytes from overnight-fasted rats incubated with glucose, palmitate decreased the production of lactate, the detritiation of [2-3H]- and [3-3H]-glucose, and the concentration of fructose 2,6-bisphosphate. Similarly, perfusion of hearts from fed rats with beta-hydroxybutyrate resulted in an inhibition of the detritiation of [3-3H]glucose and a fall in fructose 2,6-bisphosphate concentration. This fall could result from an increase in citrate (hepatocytes and heart) and sn-glycerol 3-bisphosphate concentration. It is suggested that a fall in fructose 2,6-bisphosphate concentration participates in the inhibition of glycolysis by fatty acids and ketone bodies.

Journal ArticleDOI
TL;DR: Measurement of flux between inorganic phosphate and ATP in the reactions catalyzed by phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase in anaerobic cells of the yeast Saccharomyces cerevisiae showed that both enzymes have low flux control coefficients for glycolysis but that phosphoglycersate Kinase has a relatively high flux control coefficient for the ATP----Pi exchange catalyzedby the two enzymes.
Abstract: 31P NMR magnetization-transfer measurements were used to measure flux between inorganic phosphate and ATP in the reactions catalyzed by phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase in anaerobic cells of the yeast Saccharomyces cerevisiae. Flux between ATP and Pi and glucose consumption and ethanol production were measured in cells expressing different levels of phosphoglycerate kinase activity. Overexpression of the enzyme was obtained by transforming the cells with a multicopy plasmid containing the phosphoglycerate kinase coding sequence and portions of the promoter element. Fluxes were also measured in cells in which the glyceraldehyde-3-phosphate dehydrogenase activity had been lowered by limited incubation with iodoacetate. These measurements showed that both enzymes have low flux control coefficients for glycolysis but that phosphoglycerate kinase has a relatively high flux control coefficient for the ATP----Pi exchange catalyzed by the two enzymes. The Pi----ATP exchange velocities observed in the cell were shown to be similar to those displayed by the isolated enzymes in vitro under conditions designed to mimic those in the cell with respect to the enzyme substrate concentrations.

Journal ArticleDOI
TL;DR: The data suggest an association of an increasing rate of glycolysis with tumor progression, and no changes in the isoenzyme patterns of enolase and pyruvate kinase were observed when the metastases were compared with primary breast cancers.
Abstract: The activities of hexokinase, phosphofructokinase, aldolase, enolase and pyru-vate kinase were studied in breast cancer metastases occurring at various sites and compared with the enzyme activities in

Journal ArticleDOI
TL;DR: It is confirmed that the capacities for glucose and glycogen syntheses in periportal cells are higher than in perivenous cells, but that at physiological glucose concentrations there is negligible glycolysis in liver parenchyma in both zones.
Abstract: We have investigated the cause of defective glycogen synthesis in hepatocyte preparations enriched with cells from the periportal or perivenous zones obtained by the methods of Lindros & Penttila [Biochem. J. (1985) 228, 757-760] and of Quistorff [Biochem. J. (1985) 229, 221-226]. A modified procedure which yields hepatocytes capable of consistent rates of glycogen synthesis is described, and the rates of glucose and glycogen syntheses and of glycolysis in hepatocytes from the two zones are compared. Glycogen synthesis in cells was greatly impaired by very low concentrations (0.01-0.05 mg/ml) of digitonin, which had little effect on glucose and protein syntheses and Trypan Blue exclusion. Cells exposed to such low concentrations of digitonin lose all their synthetic capacity and ability to exclude Trypan Blue when incubated with EGTA, which does not affect cells not exposed to digitonin. With a modified procedure based on this phenomenon, our study reveals that hepatocyte preparations enriched with cells from the periportal zone synthesized glucose from lactate and alanine at rates twice those by cells from the perivenous zone, whereas the rate of glycogen synthesis from C3 precursors in periportal cells was 4 times that in the perivenous preparations. With substrates entering the pathway at the triose phosphate level, gluconeogenesis in periportal-cell preparations was 20% higher, and glycogen synthesis was twice that in perivenous preparations. Glycolysis was studied by the formation of 3HOH from [2-3H]glucose, the yield of lactate, and the conversion of [14C]glucose into [14C]lactate. In cell preparations from both zones glycolysis by all criteria was negligible at 10 mM-glucose, but was substantial at higher concentrations. However, there was no difference between the zones. We confirm that the capacities for glucose and glycogen syntheses in periportal cells are higher than in perivenous cells, but that at physiological glucose concentrations there is negligible glycolysis in liver parenchyma in both zones. The metabolic pattern in the perivenous cells is not glycolytic.

Journal ArticleDOI
TL;DR: Transmembrane proton flow was found to be the most sensitive of the functions tested toward ethanol, and it could represent the first target of ethanol action on fermentation.
Abstract: The effect of ethanol on the activities of the key enzymes of the glycolytic pathway and on two membrane functions related with fermentation, the glucose uptake system, and proton extrusion rate are examined. The results indicate that ethanol, up to 2M, does not cause any change of the glucose uptake velocity nor any substantial change in the key glycolytic enzyme activities while the fermentation rate is reduced by about 50%. In a cell extract 3M ethanol as well as incubation of yeast cells with 4M ethanol caused a considerable decrease of pyruvate kinase and hexokinase activities. Phosphofructokinase remained unchanged even at higher ethanol concentrations. Transmembrane proton flow was found to be the most sensitive of the functions tested toward ethanol, and it could represent the first target of ethanol action on fermentation.

Journal ArticleDOI
TL;DR: In a mutant strain of Chlamydomonas reinhardtii devoid of active ribulose 1,5-bisphosphate carboxylase oxygenase, the addition of mitochondrial inhibitors in the dark resulted in a pronounced decrease in cellular ATP, a fall of the glucose 6-phosphates content, and a rise of the NADPH concentration.
Abstract: In a mutant strain of Chlamydomonas reinhardtii devoid of active ribulose 1,5-bisphosphate carboxylase oxygenase, the addition of mitochondrial inhibitors in the dark resulted in a pronounced decrease in cellular ATP, a fall of the glucose 6-phosphate content, and a rise of the NADPH concentration. These biochemical changes were accompanied by an increase of the fluorescence level, showing changes in the redox state of the chloroplastic electron transport chain. Similar results were obtained in presence of an uncoupler. These data indicated that alterations in the mitochondrial electron transport chain in dark could affect the chloroplastic chain, probably through variations of the glycolysis activity. When mitochondrial oxidases were blocked, illumination of the algae reversed the effect of the inhibitors on the ATP and glucose 6-phosphate concentrations. This last result suggested that the chloroplastic photophosphorylations in these algae played a major role in the control of the glycolytic flux.

Journal ArticleDOI
TL;DR: Glycolytic and mitochondrial ATP synthesis in bovine pulmonary artery endothelial cells was inhibited by glucose depletion and 650 picomole (pmole) oligomycin/micrograms DNA, respectively and this model should provide insight into the pathogenesis and treatment of the capillary leak seen with ischemia.

Journal ArticleDOI
TL;DR: The results do not support the thesis that the majority of liver glycogen is synthesized from glucose-6-phosphate derived from gluconeogenesis, and reports supporting the indirect pathway for glycogen synthesis in the liver are discussed.
Abstract: The pathway for hepatic glycogen synthesis in the postprandial state was studied in meal-fed rats chronically cannulated in the portal vein. Plasma glucose concentration in the portal vein was found to be 4.50 +/- 1.01 mM (mean +/- SE; n = 3) before a meal and 11.54 +/- 0.70 mM (mean +/- SE; n = 4) after a meal in rats meal-fed a diet consisting of 100% commercial rat chow for 7 d. The hepatic-portal difference of plasma glucose concentration showed that liver released glucose in the fasted state and either extracted or released glucose after feeding depending on plasma glucose concentration in the portal vein. The concentration of portal vein glucose at which liver changes from glucose releasing to glucose uptake was 8 mM, the Km of glucokinase [E.C. 2.7.1.12]. The rate of glycogen synthesis in liver during meal-feeding was found to be approximately 1 mumol glucosyl U/g wet wt/min in rats meal-fed a 50% glucose supplemented chow diet. The relative importance of the direct vs. indirect pathway for the replenishment of hepatic glycogen was determined by the incorporation of [3-3H,U-14C]glucose into liver glycogen. Labeled glucose was injected into the portal vein at the end of meal-feeding. The ratio of 3H/14C in the glucosyl units of glycogen was found to be 83-92% of the ratio in liver free glucose six minutes after the injection, indicating that the majority of exogenous glucose incorporated into glycogen did not go through glycolysis. The percent contribution of the direct versus indirect pathway was quantitated from the difference in the relative specific activity (RSA) of [3H] and [14C]-glycogen in rats infused with [3-3H,U-14C]glucose. No significant difference was found between the RSA of [3H]glycogen and [14C]glycogen, indicating further that the pathway for glycogen synthesis in liver from exogenous glucose is from the direct pathway. Our results do not support the thesis that the majority of liver glycogen is synthesized from glucose-6-phosphate derived from gluconeogenesis. Reasons for the discrepancy between current findings and other reports supporting the indirect pathway for glycogen synthesis in the liver are discussed.