scispace - formally typeset
Search or ask a question

Showing papers on "Multipath routing published in 2007"


Proceedings ArticleDOI
27 Aug 2007
TL;DR: RAPID is presented, an intentional DTN routing protocol that can optimize a specific routing metric such as worst-case delivery latency or the fraction of packets that are delivered within a deadline and significantly outperforms existing routing protocols for several metrics.
Abstract: Many DTN routing protocols use a variety of mechanisms, including discovering the meeting probabilities among nodes, packet replication, and network coding. The primary focus of these mechanisms is to increase the likelihood of finding a path with limited information, so these approaches have only an incidental effect on such routing metrics as maximum or average delivery latency. In this paper, we present RAPID, an intentional DTN routing protocol that can optimize a specific routing metric such as worst-case delivery latency or the fraction of packets that are delivered within a deadline. The key insight is to treat DTN routing as a resource allocation problem that translates the routing metric into per-packet utilities which determine how packets should be replicated in the system.We evaluate RAPID rigorously through a prototype of RAPID deployed over a vehicular DTN testbed of 40 buses and simulations based on real traces. To our knowledge, this is the first paper to report on a routing protocol deployed on a real DTN at this scale. Our results suggest that RAPID significantly outperforms existing routing protocols for several metrics. We also show empirically that for small loads RAPID is within 10% of the optimal performance.

1,078 citations


Journal ArticleDOI
TL;DR: This paper uses empirical vehicle traffic data measured on 1-80 freeway in California to develop a comprehensive analytical framework to study the disconnected network phenomenon and its network characteristics, and shows that, depending on the sparsity of vehicles or the market penetration rate of cars using Dedicated Short Range Communication technology, the network re-healing time can vary from a few seconds to several minutes.
Abstract: A vehicular ad hoc network (VANET) may exhibit a bipolar behavior, i.e., the network can either be fully connected or sparsely connected depending on the time of day or on the market penetration rate of the wireless communication devices. In this paper, we use empirical vehicle traffic data measured on 1-80 freeway in California to develop a comprehensive analytical framework to study the disconnected network phenomenon and its network characteristics. These characteristics shed light on the key routing performance metrics of interest in disconnected VANETs, such as the average time taken to propagate a packet to disconnected nodes (i.e., the re-healing time). Our results show that, depending on the sparsity of vehicles or the market penetration rate of cars using Dedicated Short Range Communication (DSRC) technology, the network re-healing time can vary from a few seconds to several minutes. This suggests that, for vehicular safety applications, a new ad hoc routing protocol will be needed as the conventional ad hoc routing protocols such as Dynamic Source Routing (DSR) and Ad Hoc On-Demand Distance Vector Routing (AODV) will not work with such long re-healing times. In addition, the developed analytical framework and its predictions provide valuable insights into the VANET routing performance in the disconnected network regime.

534 citations


Journal ArticleDOI
TL;DR: The main idea of the 2ACK scheme is to send two-hop acknowledgment packets in the opposite direction of the routing path in order to reduce additional routing overhead.
Abstract: We study routing misbehavior in MANETs (mobile ad hoc networks) in this paper. In general, routing protocols for MANETs are designed based on the assumption that all participating nodes are fully cooperative. However, due to the open structure and scarcely available battery-based energy, node misbehaviors may exist. One such routing misbehavior is that some selfish nodes will participate in the route discovery and maintenance processes but refuse to forward data packets. In this paper, we propose the 2ACK scheme that serves as an add-on technique for routing schemes to detect routing misbehavior and to mitigate their adverse effect. The main idea of the 2ACK scheme is to send two-hop acknowledgment packets in the opposite direction of the routing path. In order to reduce additional routing overhead, only a fraction of the received data packets are acknowledged in the 2ACK scheme. Analytical and simulation results are presented to evaluate the performance of the proposed scheme

485 citations


01 Jan 2007
TL;DR: In this paper, the authors investigate the state-of-the-art of security issues in MANET and examine routing attacks, such as link spoofing and colluding misrelay attacks, as well as countermeasures against such attacks.
Abstract: Recently, mobile ad hoc networks became a hot research topic among researchers due to their flexibility and independence of network infrastructures, such as base stations. Due to unique characteristics, such as dynamic network topology, limited bandwidth, and limited battery power, routing in a MANET is a particularly challenging task compared to a conventional network. Early work in MANET research has mainly focused on developing an efficient routing mechanism in such a highly dynamic and resource-constrained network. At present, several efficient routing protocols have been proposed for MANET. Most of these protocols assume a trusted and cooperative environment. However, in the presence of malicious nodes, the networks are vulnerable to various kinds of attacks. In MANET, routing attacks are particularly serious. In this article, we investigate the state-of-the-art of security issues in MANET. In particular, we examine routing attacks, such as link spoofing and colluding misrelay attacks, as well as countermeasures against such attacks in existing MANET protocols.

474 citations


Journal ArticleDOI
TL;DR: This article investigates the state-of-the-art of security issues in MANET and examines routing attacks, such as link spoofing and colluding misrelay attacks, as well as countermeasures against such attacks in existing MANET protocols.
Abstract: Recently, mobile ad hoc networks became a hot research topic among researchers due to their flexibility and independence of network infrastructures, such as base stations. Due to unique characteristics, such as dynamic network topology, limited bandwidth, and limited battery power, routing in a MANET is a particularly challenging task compared to a conventional network. Early work in MANET research has mainly focused on developing an efficient routing mechanism in such a highly dynamic and resource-constrained network. At present, several efficient routing protocols have been proposed for MANET. Most of these protocols assume a trusted and cooperative environment. However, in the presence of malicious nodes, the networks are vulnerable to various kinds of attacks. In MANET, routing attacks are particularly serious. In this article, we investigate the state-of-the-art of security issues in MANET. In particular, we examine routing attacks, such as link spoofing and colluding misrelay attacks, as well as countermeasures against such attacks in existing MANET protocols.

447 citations


Journal ArticleDOI
TL;DR: A metric that estimates the average waiting time for each potential next hop is designed, which provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge.
Abstract: Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that uses only observed information about the network. We designed a metric that estimates the average waiting time for each potential next hop. This learned topology information is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed each time connections are established, allowing messages to take advantage of unpredictable contacts. A message is forwarded if the topology suggests that the connected node is "closer" to the destination than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires significantly less resources than the alternative, epidemic routing, suggesting that our approach scales better with the number of messages in the network. This performance is achieved with minimal protocol overhead for networks of approximately 100 nodes.

380 citations


Journal ArticleDOI
TL;DR: It is demonstrated that PCCP achieves efficient congestion control and flexible weighted fairness for both single-path and multi-path routing, as a result this leads to higher energy efficiency and better QoS in terms of both packet loss rate and delay.
Abstract: Congestion in wireless sensor networks not only causes packet loss, but also leads to excessive energy consumption. Therefore congestion in WSNs needs to be controlled in order to prolong system lifetime. In addition, this is also necessary to improve fairness and provide better quality of service (QoS), which is required by multimedia applications in wireless multimedia sensor networks. In this paper, we propose a novel upstream congestion control protocol for WSNs, called priority-based congestion control protocol (PCCP). Unlike existing work, PCCP innovatively measures congestion degree as the ratio of packet inter-arrival time along over packet service time. PCCP still introduced node priority index to reflect the importance of each sensor node. Based on the introduced congestion degree and node priority index, PCCP utilizes a cross-layer optimization and imposes a hop-by-hop approach to control congestion. We have demonstrated that PCCP achieves efficient congestion control and flexible weighted fairness for both single-path and multi-path routing, as a result this leads to higher energy efficiency and better QoS in terms of both packet loss rate and delay.

327 citations


Proceedings ArticleDOI
29 Oct 2007
TL;DR: The extent to which routing performance optimizations have left the system vulnerable to end-to-end traffic analysis attacks from non-global adversaries with minimal resources is shown.
Abstract: Tor has become one of the most popular overlay networks for anonymizing TCP traffic. Its popularity is due in part to its perceived strong anonymity properties and its relatively low latency service. Low latency is achieved through Tor's ability to balance the traffic load by optimizing Tor router selection to probabilistically favor routers with high bandwidth capabilities. We investigate how Tor's routing optimizations impact its ability to provide strong anonymity. Through experiments conducted on PlanetLab, we show the extent to which routing performance optimizations have left the system vulnerable to end-to-end traffic analysis attacks from non-global adversaries with minimal resources. Further, we demonstrate that entry guards, added to mitigate path disruption attacks, are themselves vulnerable to attack. Finally, we explore solutions to improve Tor's current routing algorithms and propose alternative routing strategies that prevent some of the routing attacks used in our experiments.

325 citations


Journal ArticleDOI
TL;DR: A systematic framework to exploit alternative decomposition structures as a way to obtain different distributed algorithms, each with a different tradeoff among convergence speed, message passing amount and asymmetry, and distributed computation architecture is presented.
Abstract: Network utility maximization (NUM) problem formulations provide an important approach to conduct network resource allocation and to view layering as optimization decomposition In the existing literature, distributed implementations are typically achieved by means of the so-called dual decomposition technique However, the span of decomposition possibilities includes many other elements that, thus far, have not been fully exploited, such as the use of the primal decomposition technique, the versatile introduction of auxiliary variables, and the potential of multilevel decompositions This paper presents a systematic framework to exploit alternative decomposition structures as a way to obtain different distributed algorithms, each with a different tradeoff among convergence speed, message passing amount and asymmetry, and distributed computation architecture Several specific applications are considered to illustrate the proposed framework, including resource-constrained and direct-control rate allocation, and rate allocation among QoS classes with multipath routing For each of these applications, the associated generalized NUM formulation is first presented, followed by the development of novel alternative decompositions and numerical experiments on the resulting new distributed algorithms A systematic enumeration and comparison of alternative vertical decompositions in the future will help complete a mathematical theory of network architectures

309 citations


Journal ArticleDOI
Philip A. Chou1, Yunnan Wu1
TL;DR: An overview of the theory, practice, and applications of network coding is provided, including resource efficiency, computational efficiency, and robustness to network dynamics.
Abstract: In today's practical communication networks such as the Internet, information delivery is performed by routing. A promising generalization of routing is network coding. The potential advantages of network coding over routing include resource (e.g., bandwidth and power) efficiency, computational efficiency, and robustness to network dynamics. This tutorial article provides an overview of the theory, practice, and applications of network coding.

302 citations


Proceedings ArticleDOI
24 Jun 2007
TL;DR: This work proposes an inter-vehicle ad-hoc routing protocol called GyTAR (improved greedy traffic aware routing protocol) suitable for city environments and shows significant performance improvement in terms of packet delivery ratio, end-to-end delay, and routing overhead.
Abstract: The fundamental component for the success of VANET (vehicular ad hoc networks) applications is routing since it must efficiently handle rapid topology changes and a fragmented network. Current MANET (mobile ad hoc networks) routing protocols fail to fully address these specific needs especially in a city environments (nodes distribution, constrained but high mobility patterns, signal transmissions blocked by obstacles, etc.). In our current work, we propose an inter-vehicle ad-hoc routing protocol called GyTAR (improved greedy traffic aware routing protocol) suitable for city environments. GyTAR consists of two modules: (i) dynamic selection of the junctions through which a packet must pass to reach its destination, and (ii) an improved greedy strategy used to forward packets between two junctions. In this paper, we give detailed description of our approach and present its added value compared to other existing vehicular routing protocols. Simulation results show significant performance improvement in terms of packet delivery ratio, end-to-end delay, and routing overhead.

Proceedings ArticleDOI
21 May 2007
TL;DR: Evaluating the performance of reactive (AODV, DSR) and proactive (OLSR) routing protocols in MANETs under CBR traffic with different network conditions shows the superiority of proactive over reactive protocols in routing such traffic at the cost of a higher routing load.
Abstract: The mobility of nodes in mobile ad hoc networks (MANETs) results in frequent changes of network topology making routing in MANETs a challenging task. Some studies have been reported in the literature to evaluate the performance of the proposed routing algorithms. However, since the publication of experimental standards for some routing protocols by IETF, little activity has been done to contrast the performance of reactive against proactive protocols. This paper evaluates the performance of reactive (AODV, DSR) and proactive (OLSR) routing protocols in MANETs under CBR traffic with different network conditions. Our results, contrarily to previously reported studies conducted on the same routing protocols, show the superiority of proactive over reactive protocols in routing such traffic at the cost of a higher routing load.

Proceedings ArticleDOI
24 Jun 2007
TL;DR: A node analytical model is proposed to describe the scheduling-based channel assignment progress, which relief the inter-flow interference and frequent switching delay and an on-demand interaction is used to derive a cumulative delay based routing protocol.
Abstract: In cognitive radio networks, nodes can work on different frequency bands. Existing routing proposals help nodes select frequency bands without considering the effect of band switching and intra-band backoff. In this paper, We propose a joint interaction between on-demand routing and spectrum scheduling. A node analytical model is proposed to describe the scheduling-based channel assignment progress, which relief the inter-flow interference and frequent switching delay. We also use an on-demand interaction to derive a cumulative delay based routing protocol. Simulation results show that, comparing to other approaches, our protocol provides better adaptability to the multi- flow environment and derives paths with much lower cumulative delay.

Journal ArticleDOI
TL;DR: An overview of the void problem is presented and the currently available void-handling techniques (as of July 2006) for geographic routing are surveyed, each designed with a different approach.
Abstract: Communications voids, where geographic greedy forwarding fails to move a packet further towards its destination, are an important issue for geographic routing in wireless networks. This article presents an overview of the void problem and surveys the currently available void-handling techniques (as of July 2006) for geographic routing. In the survey, we classify these void-handling techniques into six categories, each designed with a different approach, that is, planar-graph-based, geometric, flooding-based, costbased, heuristic, and hybrid. For each category, we present its basic principle and illustrate some classic techniques as well as the latest advances. We also provide a qualitative comparison of these techniques and discuss some possible directions of future research.

Patent
07 May 2007
TL;DR: In this article, a path is selected using a context-based path pruning (CPP) technique that involves maintaining multiple local contexts at each intermediate node, with each local context representing at least one partial path.
Abstract: Context-based routing in multi-hop networks involves using a context-based routing metric. In a described implementation, respective path values are calculated for respective ones of multiple paths using the context-based routing metric. A path is selected from the multiple paths responsive to the calculated path values. Data is transmitted over at least one link of the selected path. In an example embodiment, the context-based routing metric is ascertained responsive to an estimated service interval (ESI) of a bottleneck link of each path of the multiple paths. In another example embodiment, the context-based routing metric is ascertained responsive to an expected resource consumption (ERC) metric. In an example embodiment of path selection, the path is selected using a context-based path pruning (CPP) technique that involves maintaining multiple local contexts at each intermediate node, with each local context representing at least one partial path.

Journal ArticleDOI
TL;DR: This paper proposes a distributed, scalable and localized multipath search protocol to discover multiple node-disjoint paths between the sink and source nodes and proposes a load balancing algorithm to distribute the traffic over the multiple paths discovered.
Abstract: The energy consumption is a key design criterion for the routing protocols in wireless sensor networks. Some of the conventional single path routing schemes may not be optimal to maximize the network lifetime and connectivity. In this paper, we propose a distributed, scalable and localized multipath search protocol to discover multiple node-disjoint paths between the sink and source nodes. We also propose a load balancing algorithm to distribute the traffic over the multiple paths discovered. We compare our proposed scheme with the directed diffusion, directed transmission, N-to-1 multipath routing, and the energy-aware routing protocols. Simulation results show that our proposed scheme has a higher node energy efficiency, lower average delay and control overhead than those protocols. Copyright © 2006 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive and in-depth survey on packet reordering in TCP and discuss the causes and problems of packet reorderings in TCP, as well as some open questions.
Abstract: Transmission control protocol (TCP) is the most popular transport layer protocol for the Internet. Due to various reasons, such as multipath routing, route fluttering, and retransmissions, packets belonging to the same flow may arrive out of order at a destination. Such packet reordering violates the design principles of some traffic control mechanisms in TCP and, thus, poses performance problems. In this paper, we provide a comprehensive and in-depth survey on recent research on packet reordering in TCP. The causes and problems for packet reordering are discussed. Various representative algorithms are examined and compared by computer simulations. The ported program codes and simulation scripts are available for download. Some open questions are discussed to stimulate further research in this area

Journal ArticleDOI
20 Jul 2007
TL;DR: It is demonstrated that in view of recent results in compact routing research, logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing, and a fundamental re-examination of assumptions behind routing models and abstractions is needed.
Abstract: The Internet's routing system is facing stresses due to its poor fundamental scaling properties. Compact routing is a research field that studies fundamental limits of routing scalability and designs algorithms that try to meet these limits. In particular, compact routing research shows that shortest-path routing, forming a core of traditional routing algorithms, cannot guarantee routing table (RT) sizes that on all network topologies grow slower than linearly as functions of the network size. However, there are plenty of compact routing schemes that relax the shortest-path requirement and allow for improved, sublinear RT size scaling that is mathematically provable for all static network topologies. In particular, there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer RT sizes that scale logarithmically with the network size.In this paper, we demonstrate that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic RT size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale "indefinitely.

Proceedings ArticleDOI
27 Aug 2007
TL;DR: This work describes a complete and fully-implemented protocol, capable of being deployed in the DTN reference implementation without modification, and demonstrates that the system operates effectively when conventional routing and forwarding may fail.
Abstract: We consider the problem of routing in delay tolerant networks deployed in developing regions. Although these environments experience intermittent connectivity (hence the desire to use DTN), in many cases the topology has an underlying stability that we can exploit when designing routing protocols. By making small, yet critical, modifications to classical link state routing, we derive a more effective algorithm capable of leveraging predictions of future link uptimes. We describe a complete and fully-implemented protocol, capable of being deployed in the DTN reference implementation without modification. Using a simulation incorporating real-world network characteristics, we demonstrate that our system operates effectively when conventional routing and forwarding may fail.

Journal ArticleDOI
TL;DR: An adaptive memory algorithm to solve the Vehicle Routing Problem with Multiple Trips, an extension of the classical Vehicle Routed Problem in which each vehicle may perform several routes in the same planning period is proposed.

Proceedings ArticleDOI
01 May 2007
TL;DR: This work develops a statistical traffic model based on the data collected on 1-80 freeway in California in order to study key performance metrics of interest in disconnected VANETs, such as average re-healing time (or the network restoration time).
Abstract: Vehicular ad hoc wireless network (VANET) exhibits a bipolar behavior in terms of network topology: fully connected topology with high traffic volume or sparsely connected topology when traffic volume is low. In this work, we develop a statistical traffic model based on the data collected on 1-80 freeway in California in order to study key performance metrics of interest in disconnected VANETs, such as average re-healing time (or the network restoration time). Our results show that, depending on the sparsity of vehicles, the network re-healing time can vary from a few seconds to several minutes. This suggests that, a new ad hoc routing protocol will be needed as the conventional ad hoc routing protocols such as dynamic source routing (DSR) and ad hoc on-demand distance vector routing (AODV) will not work with such long re-healing times.

Journal ArticleDOI
TL;DR: This work formalizes problems that incorporate two major requirements of multipath routing and establishes the intractability of these problems in terms of computational complexity, and establishes efficient solutions with proven performance guarantees.
Abstract: Unlike traditional routing schemes that route all traffic along a single path, multipath routing strategies split the traffic among several paths in order to ease congestion. It has been widely recognized that multipath routing can be fundamentally more efficient than the traditional approach of routing along single paths. Yet, in contrast to the single-path routing approach, most studies in the context of multipath routing focused on heuristic methods. We demonstrate the significant advantage of optimal (or near optimal) solutions. Hence, we investigate multipath routing adopting a rigorous (theoretical) approach. We formalize problems that incorporate two major requirements of multipath routing. Then, we establish the intractability of these problems in terms of computational complexity. Finally, we establish efficient solutions with proven performance guarantees.

Proceedings ArticleDOI
15 Oct 2007
TL;DR: This paper presents how the proposed movement prediction-based routing (MOPR) concept for VANETs can be applied to position- based routing protocols, and how it improves their performances, and compares MOPR with the position-Based routing protocol GPSR and another movement-based routed protocol called MORA.
Abstract: Nowadays, researchers show more and more interests to vehicular ad hoc networks (VANETs), which are a specific instance of mobile ad hoc networks (MANETs) where nodes are vehicles. In VANETs, vehicles have no energy resource constraint which could extend coverage and network lifetime, but have a high mobility patterns that cause frequent and fast topology changes. Consequently, VANETs have particular research interests, like dedicated MAC and routing optimization. In our previous work, we have proposed movement prediction-based routing (MOPR) concept for VANETs, which improves the routing process by selecting the most stable route in terms of lifetime with respect to the movement of vehicles. And in this paper, we present how this MOPR concept can be applied to position-based routing protocols, and how it improves their performances. Based on simulation results we compare MOPR with the position-based routing protocol GPSR and another movement-based routing protocol called MORA.

Proceedings ArticleDOI
26 Mar 2007
TL;DR: The results show that deterministic routing can achieve a similar, and in some scenarios higher, level of performance than adaptive routing, while providing in-order packet delivery.
Abstract: Clusters of PCs have become very popular to build high performance computers. These machines use commodity PCs linked by a high speed interconnect. Routing is one of the most important design issues of interconnection networks. Adaptive routing usually better balances network traffic, thus allowing the network to obtain a higher throughput. However, adaptive routing introduces out-of-order packet delivery, which is unacceptable for some applications. Concerning topology, most of the commercially available interconnects are based on fat-tree. Fat-trees offer a rich connectivity among nodes, making possible to obtain paths between all source-destination pairs that do not share any link. We exploit this idea to propose a deterministic routing algorithm for fat-trees, comparing it with adaptive routing in several workloads. The results show that deterministic routing can achieve a similar, and in some scenarios higher, level of performance than adaptive routing, while providing in-order packet delivery.

Journal ArticleDOI
01 Mar 2007
TL;DR: An ORBIT mobility framework is proposed to achieve this macro-level abstraction of orbital movement, and a Sociological Orbit aware Location Approximation and Routing (SOLAR) protocol is proposed that significantly outperforms conventional routing protocols in terms of higher data throughput, lower control overhead, and lower end-to-end delay.
Abstract: Mobility affects routing protocol performance in a Mobile Ad Hoc NETwork (MANET). This paper introduces a novel concept of ''macro-mobility'' information obtained from the sociological movement pattern of MANET users, and proposes a routing protocol that can take advantage of the macro-mobility information. This macro-mobility information is extracted from our observation that the movement of a mobile user exhibits a partially repetitive ''orbital'' pattern involving a set of ''hubs''. This partially deterministic movement pattern is not only practical, but also useful for locating nodes without the need for constant tracking and for routing packets to them without flooding. More specifically, this paper makes the following two contributions. First, it proposes an ORBIT mobility framework to achieve this macro-level abstraction of orbital movement. Second, to take advantage of this hub-based orbital pattern, it proposes a Sociological Orbit aware Location Approximation and Routing (SOLAR) protocol. Extensive performance analysis shows that SOLAR significantly outperforms conventional routing protocols like Dynamic Source Routing (DSR) and Location Aided Routing (LAR) in terms of higher data throughput, lower control overhead, and lower end-to-end delay.

Proceedings ArticleDOI
01 Mar 2007
TL;DR: This paper considers the issue of cooperative routing under the effect of both multi-user interference and fading in ultra-wideband (UWB) networks and shows that the cooperative routing algorithm reduces the average transmit energy by 8dB at 3% of outage.
Abstract: There is recently an increasing popularity in the use of wireless ad hoc networks, especially for sensor networks. However, these networks are susceptible to fading, interference and limited power supply. In this paper, we consider the issue of cooperative routing under the effect of both multi-user interference (MUI) and fading in ultra-wideband (UWB) networks. We first generate a single path route from any available routing algorithms. Based on this single path route, our cooperative routing algorithm is executed to see whether nodes which 'overhear' the information should cooperate to alleviate the effect of fading, and thus improve outage performance. From our result, it is shown that our cooperative routing algorithm reduces the average transmit energy by 8dB at 3% of outage.

Proceedings ArticleDOI
18 Jun 2007
TL;DR: A new metric EAX is defined that captures the expected number of any-path transmissions needed to successfully deliver a packet between two nodes under opportunistic routing and develops a candidate selection and prioritization method corresponding to an ideal opportunist routing scheme.
Abstract: Traditional routing schemes select the best path for each destination and forward a packet to the corresponding next hop. While such best-path routing schemes are considered well-suited for networks with reliable point-to-point links, they are not necessarily ideal for wireless networks with lossy broadcast links. Consequently, opportunistic routing schemes that exploit the broadcast nature of wireless transmissions and dynamically select a next-hop per-packet based on loss conditions at that instant are being actively explored. It is generally accepted that opportunistic routing performs substantially better than best-path routing for wireless mesh networks. In this paper, we analyze the efficacy of opportunistic routing. We define a new metric EAX that captures the expected number of any-path transmissions needed to successfully deliver a packet between two nodes under opportunistic routing. Based on EAX, we develop a candidate selection and prioritization method corresponding to an ideal opportunistic routing scheme. We then conduct an off-line comparison of best-path routing and opportunistic routing using our EAX metric and MIT Roofnet trace. We observe that while opportunistic routing offers better performance than best- path routing, the gain is not as high as commonly believed.

Journal ArticleDOI
TL;DR: This work defines the maximum energetically sustainable workload (MESW) as the objective function to be used to drive the optimization of routing algorithms for EH-WSNs, and proposes a methodology that makes use of graph algorithms and network simulations for evaluating the MESW.

Journal ArticleDOI
TL;DR: A method is proposed to enhance the traffic handling capacity of scale-free networks by closing or cutting some links between some large-degree nodes, for both local routing strategy and global shortest-path routing strategy.
Abstract: In this paper, a method is proposed to enhance the traffic handling capacity of scale-free networks by closing or cutting some links between some large-degree nodes, for both local routing strategy and global shortest-path routing strategy. The traffic capacity of networks is found to be considerably improved after applying the link-closing strategy, especially in the case of global routing. Due to the strongly improved network capacity, easy realization on networks, and low cost, the strategy may be useful for modern communication networks.

Journal ArticleDOI
TL;DR: A new routing protocol called SEEM: Secure and Energy-Efficient multipath Routing protocol, which uses multipath alternately as the path for communicating between two nodes thus prolongs the lifetime of the network.