scispace - formally typeset
Search or ask a question

Showing papers on "Photosynthetic reaction centre published in 2000"


Journal ArticleDOI
TL;DR: The pathways for transfer of the first and second protons were elucidated by high-resolution X-ray crystallography as well as kinetic studies showing changes in the rate of proton transfer due to site directed mutations and metal ion binding.

327 citations


Journal ArticleDOI
TL;DR: Thermodynamic and kinetic implications of the related roles of Y(Z) in preserving the high photochemical quantum efficiency in Photosystem II (PSII) and of conserving the highly oxidizing conditions generated by the photochemistry in the PSII reaction center are discussed.

300 citations


Journal ArticleDOI
TL;DR: The origin of the 683 and 679 nm absorption bands of the PS II RC complex are discussed and it is suggested that these forms may reflect the single-site spectrum with dominant contributions from the zero-phonon line and a pronounced ∼80 cm−1 phonon side band, respectively.
Abstract: In this Minireview, we discuss a number of issues on the primary photosynthetic reactions of the green plant Photosystem II. We discuss the origin of the 683 and 679 nm absorption bands of the PS II RC complex and suggest that these forms may reflect the single-site spectrum with dominant contributions from the zero-phonon line and a pronounced ∼80 cm−1 phonon side band, respectively. The couplings between the six central RC chlorins are probably very similar and, therefore, a `multimer' model arises in which there is no `special pair' and in which for each realization of the disorder the excitation may be dynamically localized on basically any combination of neighbouring chlorins. The key features of our model for the primary reactions in PS II include ultrafast (<500 fs) energy transfer processes within the multimer, `slow' (∼20 ps) energy transfer processes from peripheral RC chlorophylls to the RC multimer, ultrafast charge separation (<500 fs) with a low yield starting from the singlet-excited `accessory' chlorophyll of the active branch, cation transfer from this `accessory' chlorophyll to a `special pair' chlorophyll and/or charge separation starting from this `special pair' chlorophyll (∼8 ps), and slow relaxation (∼50 ps) of the radical pair by conformational changes of the protein. The charge separation in the PS II RC can probably not be described as a simple trap-limited or diffusion-limited process, while for the PS II core and larger complexes the transfer of the excitation energy to the PS II RC may be rate limiting.

204 citations


Journal ArticleDOI
TL;DR: The first 3D structure of the photosystem II (PSII) supercomplex of higher plants, constructed by single particle analysis of images obtained by cryoelectron microscopy is described, representing a significant step forward in revealing the structure ofThe photosynthetic OEC whose activity is required to sustain the aerobic atmosphere on the authors' planet.
Abstract: Here we describe the first 3D structure of the photosystem II (PSII) supercomplex of higher plants, constructed by single particle analysis of images obtained by cryoelectron microscopy. This large multisubunit membrane protein complex functions to absorb light energy and catalyze the oxidation of water and reduction of plastoquinone. The resolution of the 3D structure is 24 A and emphasizes the dimeric nature of the supercomplex. The extrinsic proteins of the oxygen-evolving complex (OEC) are readily observed as a tetrameric cluster bound to the lumenal surface. By considering higher resolution data, obtained from electron crystallography, it has been possible to relate the binding sites of the OEC proteins with the underlying intrinsic membrane subunits of the photochemical reaction center core. The model suggests that the 33 kDa OEC protein is located towards the CP47/D2 side of the reaction center but is also positioned over the C-terminal helices of the D1 protein including its CD lumenal loop. In contrast, the model predicts that the 23/17 kDa OEC proteins are positioned at the N-terminus of the D1 protein incorporating the AB lumenal loop of this protein and two other unidentified transmembrane helices. Overall the 3D model represents a significant step forward in revealing the structure of the photosynthetic OEC whose activity is required to sustain the aerobic atmosphere on our planet.

189 citations


Journal ArticleDOI
A.B. Hope1
TL;DR: It is concluded that nearly all data from in vitro experiments can be interpreted with a reaction scheme in which an encounter complex between donor and acceptor is formed by long-range electrostatic attraction, followed by rearrangement during which metal centres become close enough for rapid intra-complex electron transfer.

186 citations


Journal ArticleDOI
TL;DR: An experimental and theoretical photon echo (PE) study of the primary charge separation process in the photosystem II reaction center (PS II RC) at low temperature (T = 1.33 ± 0.01 K) is reported in this paper.
Abstract: An experimental and theoretical photon echo (PE) study of the primary charge separation process in the photosystem II reaction center (PS II RC) at low temperature (T = 1.33 ± 0.01 K) is reported. Experiments were carried out at low excitation intensities of 5 × 1012 photons/cm2 with time and spectral resolution of about 0.5 ps and 1 nm, respectively, using the two-pulse photon echo technique (2PE). The data were interpreted in the framework of the exciton model. For that purpose the theory of the PE formation and energy transfer in an excitonically coupled system, including explicitly the electron-bath interaction, is developed. By comparing the measured and the simulated PE kinetics, we draw the conclusion that the accessory chlorophyll in the active branch of the RC core is the primary electron donor. The charge separation occurs with an intrinsic time constant of ≈1.5 ps, in good agreement with previously published data (Wasielewski, M. R.; Johnson, D. G.; Seibert, M.; Govindjee Proc. Natl. Acad. Sci....

178 citations


Journal ArticleDOI
TL;DR: Results demonstrate that D1 translation elongation and membrane insertion are tightly coupled and highly regulated processes in that proper insertion is a prerequisite fortranslation elongation of D1.
Abstract: Regulation of translation elongation, membrane insertion, and assembly of the chloroplast-encoded D1 protein of photosystem II (PSII) was studied using a chloroplast translation system in organello. Translation elongation of D1 protein was found to be regulated by (1) a redox component that can be activated not only by photosynthetic electron transfer but also by reduction with DTT; (2) the trans-thylakoid proton gradient, which is absolutely required for elongation of D1 nascent chains on the thylakoid membrane; and (3) the thiol reactants N-ethylmaleimide (NEM) and iodosobenzoic acid (IBZ), which inhibit translation elongation with concomitant accumulation of distinct D1 pausing intermediates. These results demonstrate that D1 translation elongation and membrane insertion are tightly coupled and highly regulated processes in that proper insertion is a prerequisite for translation elongation of D1. Cotranslational and post-translational assembly steps of D1 into PSII reaction center and core complexes occurred independently of photosynthetic electron transfer or trans-thylakoid proton gradient but were strongly affected by the thiol reactants DTT, NEM, and IBZ. These compounds reduced the stability of the early PSII assembly intermediates, hampered the C-terminal processing of the precursor of D1, and prevented the post-translational reassociation of CP43, indicating a strong dependence of the D1 assembly steps on proper redox conditions and the formation of disulfide bonds.

163 citations


Journal ArticleDOI
TL;DR: It is shown here that a structural element containing a weak sequence motif is common to the Q(A) and Q(B) sites of bacterial reaction centres and theQ(i) site of the mitochondrial bc(1) complex, a first step in the structural classification of quinone binding sites.

161 citations


Journal ArticleDOI
TL;DR: It is found that mixotrophic growth in acetate is not associated with activation of the cyanide-insensitive alternative oxidase pathway, and interpretations of the effects of environmental or genetic manipulations of photosynthesis are likely to be confounded by acetate in the medium.
Abstract: The green alga Chlamydomonas reinhardtii can grow photoautotrophically utilizing CO(2), heterotrophically utilizing acetate, and mixotrophically utilizing both carbon sources. Growth of cells in increasing concentrations of acetate plus 5% CO(2) in liquid culture progressively reduced photosynthetic CO(2) fixation and net O(2) evolution without effects on respiration, photosystem II efficiency (as measured by chlorophyll fluorescence), or growth. Using the technique of on-line oxygen isotope ratio mass spectrometry, we found that mixotrophic growth in acetate is not associated with activation of the cyanide-insensitive alternative oxidase pathway. The fraction of carbon biomass resulting from photosynthesis, determined by stable carbon isotope ratio mass spectrometry, declined dramatically (about 50%) in cells grown in acetate with saturating light and CO(2). Under these conditions, photosynthetic CO(2) fixation and O(2) evolution were also reduced by about 50%. Some growth conditions (e.g. limiting light, high acetate, solid medium in air) virtually abolished photosynthetic carbon gain. These effects of acetate were exacerbated in mutants with slowed electron transfer through the D1 reaction center protein of photosystem II or impaired chloroplast protein synthesis. Therefore, in mixotrophically grown cells of C. reinhardtii, interpretations of the effects of environmental or genetic manipulations of photosynthesis are likely to be confounded by acetate in the medium.

160 citations


Journal ArticleDOI
TL;DR: The crystal structures of the RC and the HiPIP from Thermochromatium (Tch.) tepidum are reported, at 2.2-A and 1.5-A resolution, respectively.
Abstract: The reaction center (RC) of photosynthetic bacteria is a membrane protein complex that promotes a light-induced charge separation during the primary process of photosynthesis. In the photosynthetic electron transfer chain, the soluble electron carrier proteins transport electrons to the RC and reduce the photo-oxidized special-pair of bacteriochlorophyll. The high-potential iron-sulfur protein (HiPIP) is known to serve as an electron donor to the RC in some species, where the c-type cytochrome subunit, the peripheral subunit of the RC, directly accepts electrons from the HiPIP. Here we report the crystal structures of the RC and the HiPIP from Thermochromatium (Tch.) tepidum, at 2.2-Å and 1.5-Å resolution, respectively. Tch. tepidum can grow at the highest temperature of all known purple bacteria, and the Tch. tepidum RC shows some degree of stability to high temperature. Comparison with the RCs of mesophiles, such as Blastochloris viridis, has shown that the Tch. tepidum RC possesses more Arg residues at the membrane surface, which might contribute to the stability of this membrane protein. The RC and the HiPIP both possess hydrophobic patches on their respective surfaces, and the HiPIP is expected to interact with the cytochrome subunit by hydrophobic interactions near the heme-1, the most distal heme to the special-pair.

156 citations


Journal ArticleDOI
TL;DR: Dissociation of TLP40 caused by an abrupt elevation in temperature and activation of the membrane protein phosphatase are suggested to trigger accelerated repair of photodamaged PSII and to operate as possible early signals initiating other heat shock responses in chloroplasts.
Abstract: Kinetic studies of protein dephosphorylation in photosynthetic thylakoid membranes revealed specifically accelerated dephosphorylation of photosystem II (PSII) core proteins at elevated temperatures. Raising the temperature from 22 degrees C to 42 degrees C resulted in a more than 10-fold increase in the dephosphorylation rates of the PSII reaction center proteins D1 and D2 and of the chlorophyll a binding protein CP43 in isolated spinach (Spinacia oleracea) thylakoids. In contrast the dephosphorylation rates of the light harvesting protein complex and the 9-kD protein of the PSII (PsbH) were accelerated only 2- to 3-fold. The use of a phospho-threonine antibody to measure in vivo phosphorylation levels in spinach leaves revealed a more than 20-fold acceleration in D1, D2, and CP43 dephosphorylation induced by abrupt elevation of temperature, but no increase in light harvesting protein complex dephosphorylation. This rapid dephosphorylation is catalyzed by a PSII-specific, intrinsic membrane protein phosphatase. Phosphatase assays, using intact thylakoids, solubilized membranes, and the isolated enzyme, revealed that the temperature-induced lateral migration of PSII to the stroma-exposed thylakoids only partially contributed to the rapid increase in the dephosphorylation rate. Significant activation of the phosphatase coincided with the temperature-induced release of TLP40 from the membrane into thylakoid lumen. TLP40 is a peptidyl-prolyl cis-trans isomerase, which acts as a regulatory subunit of the membrane phosphatase. Thus dissociation of TLP40 caused by an abrupt elevation in temperature and activation of the membrane protein phosphatase are suggested to trigger accelerated repair of photodamaged PSII and to operate as possible early signals initiating other heat shock responses in chloroplasts.

Journal ArticleDOI
TL;DR: The observed effects demonstrate that PSI-K has a role in organizing the peripheral light-harvesting complexes on the core antenna of photosystem I and reduces the redistribution of absorbed excitation energy between the two photosystems.

Journal ArticleDOI
TL;DR: Structural-based modeling indicates that the so-called red antenna pigments play a decisive role in the observed fluorescence kinetics, and the excited-state decay kinetics turn out to be neither purely trap limited nor purely transfer (to the trap) limited, but seem to be rather balanced.

Journal ArticleDOI
TL;DR: A correlation between energy transfer rate and spectral blue-shift of the B800 absorption band is in qualitative agreement with the trend predicted from Förster spectral overlap calculations, although the experimentally determined rates are approximately 5 times faster than those predicted by simulations.

Journal ArticleDOI
TL;DR: A photosystem II (PSII) complex highly active in oxygen evolution was purified and crystallized from a thermophilic cyanobacterium, Synechococcus vulcanus, indicating that the PSII crystallized is a dimer.
Abstract: A photosystem II (PSII) complex highly active in oxygen evolution was purified and crystallized from a thermophilic cyanobacterium, Synechococcus vulcanus. The PSII complex in the crystals contained the D1/D2 reaction center subunits, CP47 and CP43 (two chlorophyll-binding core antenna proteins of photosystem II), cytochrome b-559 alpha- and beta-subunits, several low molecular weight subunits, and three extrinsic proteins, that is, 33 and 12 kDa proteins and cytochrome c-550. The PSII complex also retained a high rate of oxygen evolution. The apparent molecular mass of the PSII in the crystals was determined to be 580 kDa by gel filtration chromatography, indicating that the PSII crystallized is a dimer. The crystals diffracted to a maximum resolution of 3.5 A at a cryogenic temperature using X-rays from a synchrotron radiation source, SPring-8. The crystals belonged to an orthorhombic system, and the space group was P2(1)2(1)2(1) with unit cell dimensions of a = 129.7 A, b = 226.5 A, and c = 307.8 A. Each asymmetric unit contained one PSII dimer, which gave rise to a specific volume (V(M)) of 3.6 A(3)/Da based on the calculated molecular mass of 310 kDa for a PSII monomer and an estimated solvent content of 66%. Multiple data sets of native crystals have been collected and processed to 4.0 A, indicating that our crystals are suitable for structure analysis at this resolution.

Journal ArticleDOI
Yi Zhen Hu1, Shinya Tsukiji1, Seiji Shinkai1, Shigero Oishi1, Itaru Hamachi1 
TL;DR: In this paper, tris(heteroleptic) Ru−bipyridine complexes were synthesized by sequential coordination of the two different functionalized bipyridine ligands with a readily obtainable precursor [Ru(4,4‘-dimethyl-2,2‘)-Cl3]n followed by metal insertion.
Abstract: Artificial photosynthetic reaction centers have been constructed on a protein surface by cofactor reconstitution, which mimic the function of photosynthetic organisms to convert light energy to chemical potential in the form of long-lived charge-separated states. They feature a ruthenium tris(2,2‘-bipyridine) moiety as the sensitizer, which is mechanically linked (i.e., in catenane-type) with a cyclobis(paraquat-p-phenylene) unit (BXV4+, acceptor) and covalently linked with a protoheme or Zn−protoporphyrin (donor) located in the myoglobin pocket. Their cofactors 1 and 2, which are tris(heteroleptic) Ru−bipyridine complexes, were synthesized by sequential coordination of the two different functionalized bipyridine ligands with a readily obtainable precursor [Ru(4,4‘-dimethyl-2,2‘-bipyridine)Cl3]n followed by metal insertion; this represents a new efficient synthetic method for tris(heteroleptic) Ru(II) complexes of bidentate polypyridine ligands. Reconstitution of apo-myoglobin (Mb) with 1 and 2 affords th...

Journal ArticleDOI
TL;DR: The PSI-F subunit of photosystem I is a transmembrane protein with a large lumenal domain that gave rise to disorganization of the thylakoids and caused chronic photoinhibition in Arabidopsis plants transformed with an antisense construct of the psaF cDNA.

Journal ArticleDOI
TL;DR: The reaction center from Rhodobacter sphaeroides couples light-driven electron transfer to protonation of a bound quinone acceptor molecule, Q(B), within the RC to report on the metal binding site, determined by x-ray diffraction at 2.5-A resolution, from RC crystals that were soaked in the presence of the metal.
Abstract: The reaction center (RC) from Rhodobacter sphaeroides couples light-driven electron transfer to protonation of a bound quinone acceptor molecule, QB, within the RC. The binding of Cd2+ or Zn2+ has been previously shown to inhibit the rate of reduction and protonation of QB. We report here on the metal binding site, determined by x-ray diffraction at 2.5-A resolution, obtained from RC crystals that were soaked in the presence of the metal. The structures were refined to R factors of 23% and 24% for the Cd2+ and Zn2+ complexes, respectively. Both metals bind to the same location, coordinating to Asp-H124, His-H126, and His-H128. The rate of electron transfer from QA− to QB was measured in the Cd2+-soaked crystal and found to be the same as in solution in the presence of Cd2+. In addition to the changes in the kinetics, a structural effect of Cd2+ on Glu-H173 was observed. This residue was well resolved in the x-ray structure—i.e., ordered—with Cd2+ bound to the RC, in contrast to its disordered state in the absence of Cd2+, which suggests that the mobility of Glu-H173 plays an important role in the rate of reduction of QB. The position of the Cd2+ and Zn2+ localizes the proton entry into the RC near Asp-H124, His-H126, and His-H128. Based on the location of the metal, likely pathways of proton transfer from the aqueous surface to QB⨪ are proposed.

Journal ArticleDOI
TL;DR: Fullerenes have been used successfully in the covalent assembly of supramolecular systems that mimic some of the electron transfer steps of photosynthetic reaction centers, and these systems exhibit several differences from the superficially more biomimetic quinone electron acceptors.
Abstract: Fullerenes have been used successfully in the covalent assembly of supramolecular systems that mimic some of the electron transfer steps of photosynthetic reaction centers. In these constructs C60 is most often used as the primary electron acceptor; it is linked to cyclic tetrapyrroles or other chromophores which act as primary electron donors in photoinduced electron transfer processes. In artificial photosynthetic systems, fullerenes exhibit several differences from the superficially more biomimetic quinone electron acceptors. The lifetime of the initial charge-separated state in fullerene-based molecules is, in general, considerably longer than in comparable systems containing quinones. Moreover, photoinduced electron transfer processes take place in non-polar solvents and at low temperature in frozen glasses in a number of fullerene-based dyads and triads. These features are unusual in photosynthetic model systems that employ electron acceptors such as quinones, and are more reminiscent of electron transfer in natural reaction centers. This behavior can be attributed to a reduced sensitivity of the fullerene radical anion to solvent charge stabilization effects and small internal and solvent reorganization energies for electron transfer in the fullerene systems, relative to quinone-based systems.

Journal ArticleDOI
TL;DR: It is found that the strongly coupled pair of titratable groups Glu-L212 and Asp-L213 binds about one proton in the dark-adapted X-ray structure, where the electron is mainly localized at Q(A), and about two protons in the light-exposed structure, which agrees with recent experimental and theoretical studies.
Abstract: The electron transfer between the two quinones Q(A) and Q(B) in the bacterial photosynthetic reaction center (bRC) is coupled to a conformational rearrangement. Recently, the X-ray structures of the dark-adapted and light-exposed bRC from Rhodobacter sphaeroides were solved, and the conformational changes were characterized structurally. We computed the reaction free energy for the electron transfer from to Q(B) in the X-ray structures of the dark-adapted and light-exposed bRC from Rb. sphaeroides. The computation was done by applying an electrostatic model using the Poisson-Boltzmann equation and Monte Carlo sampling. We accounted for possible protonation changes of titratable groups upon electron transfer. According to our calculations, the reaction energy of the electron transfer from to Q(B) is +157 meV for the dark-adapted and -56 meV for the light-exposed X-ray structure; i.e., the electron transfer is energetically uphill for the dark-adapted structure and downhill for the light-exposed structure. A common interpretation of experimental results is that the electron transfer between and Q(B) is either gated or at least influenced by a conformational rearrangement: A conformation in which the electron transfer from to Q(B) is inactive, identified with the dark-adapted X-ray structure, changes into an electron-transfer active conformation, identified with the light-exposed X-ray structure. This interpretation agrees with our computational results if one assumes that the positive reaction energy for the dark-adapted X-ray structure effectively prevents the electron transfer. We found that the strongly coupled pair of titratable groups Glu-L212 and Asp-L213 binds about one proton in the dark-adapted X-ray structure, where the electron is mainly localized at Q(A), and about two protons in the light-exposed structure, where the electron is mainly localized at Q(B). This finding agrees with recent experimental and theoretical studies. We compare the present results for the bRC from Rb. sphaeroides to our recent studies on the bRC from Rhodopseudomonas viridis. We discuss possible mechanisms for the gated electron transfer from to Q(B) and relate them to theoretical and experimental results.

Journal ArticleDOI
TL;DR: From polarized absorption spectra on oriented membranes, it is concluded that PufX induces a specific orientation of the reaction center in the LH1 ring, as well as the formation of a long-range regular array of LH1-RC cores in the photosynthetic membrane.
Abstract: Bacterial photosynthesis relies on the interplay between light harvesting and electron transfer complexes, all of which are located within the intracytoplasmic membrane. These complexes capture and transfer solar energy, which is used to generate a proton gradient. In this study, we identify one of the factors that determines the organization of these complexes. We undertook a comparison of the organization of the light-harvesting complex 1 (LH1)/reaction center (RC) cores in the LH2− mutant of Rhodobacter sphaeroides in the presence or absence of the PufX protein. From polarized absorption spectra on oriented membranes, we conclude that PufX induces a specific orientation of the reaction center in the LH1 ring, as well as the formation of a long-range regular array of LH1-RC cores in the photosynthetic membrane. From our data, we have constructed a precise model of how the RC is positioned within the LH1 ring relative to the long (orientation) axis of the photosynthetic membrane.

Journal ArticleDOI
TL;DR: In this article, a time-resolved high-field EPR spectroscopy was used to study short-lived species in their working states, which provided detailed information on the structure and dynamics of the cofactors in their binding sites.
Abstract: Primary photosynthesis is the biological electron transfer process by which green plants and certain bacteria convert the energy of sunlight into electrochemical energy. Light-induced charge separation is achieved by (bacterio) chlorophyll donor and quinone acceptor cofactors in the transmembrane reaction center protein complexes. Thereby transient radical ions are formed creating weakly coupled radical pairs. Time-resolved high-field EPR spectroscopy is ideally suited to study such short-lived species in their working states. It provides detailed information on the structure and dynamics of the cofactors in their binding sites and on hydrogen bond interaction with the protein. Thereby, our understanding of primary photosynthesis on the molecular level is improved.

Journal ArticleDOI
TL;DR: In pheophytin‐modified RCs, the fs oscillations with frequency around 130 cm−1 observed in the P*‐stimulated emission as well as in the BA absorption band at 800 nm are accompanied by remarkable and reversible formation of the 1020 nm absorption band which is characteristic of the radical anion band of bacteriochlorophyll monomer BA −.

Journal ArticleDOI
TL;DR: Three examples of the analysis of reactions in photosynthetic reaction centers are given: comparison of the electrochemistry of hemes in different sites; analysis of the role of the protein in stabilizing the early charge separated state in photosynthesis; and calculation of the proton uptake and protein motion coupled to the electron transfer from the primary (Q(A)) to secondary (B)) quinone.

Journal ArticleDOI
TL;DR: Energy equilibration in the photosystem I core antenna from the cyanobacterium Synechocystis sp.
Abstract: Energy equilibration in the photosystem I core antenna from the cyanobacterium Synechocystis sp. PCC 6803 was studied using femtosecond transient absorption spectroscopy at 298 K. The photosystem I core particles were excited at 660, 693, and 710 nm with 150 fs spectrally narrow laser pulses (fwhm = 5 nm). Global analysis revealed three kinetic processes in the core antenna with lifetimes of 250−500 fs, 1.5−2.5 ps, and 20−30 ps. The first two components represent strongly excitation wavelength-dependent energy equilibration processes while the 20−30 ps phase reflects the trapping of energy by the reaction center. Excitation into the blue and red edge of the absorption band induces downhill and uphill energy flows, respectively, between different chlorophyll a spectral forms of the core. Excitation at 660 nm induces a 500 fs downhill equilibration process within the bulk of antenna while the selective excitation of long-wavelength-absorbing chlorophylls at 710 nm results in a 380 fs uphill energy transfer ...

Journal ArticleDOI
TL;DR: A novel model is presented, which gives a quantitative relation between the efficiencies of primary photochemistry, energy trapping, and radical pair recombination in PSII and the experimental data suggest evidence for an electrostatic effect of local charges in the vicinity of the reaction center affecting the rate of radical couple recombination.

Journal ArticleDOI
TL;DR: The antenna chlorophyll a (Chl a) molecules of photosystem I of green plants and cyanobacteria that absorb further to the red than P700, the special pair of the reaction center, have long been of c...
Abstract: The antenna chlorophyll a (Chl a) molecules of photosystem I of green plants and cyanobacteria that absorb further to the red than P700, the special pair of the reaction center, have long been of c...

Journal ArticleDOI
TL;DR: In this paper, the excitation energy transfer between light-harvesting complex I (LH-I) and the photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (Rb.) sphaeroides is investigated on the basis of the atomic level structures of the two proteins, assuming a ring-shaped model for LH-I.
Abstract: The excitation energy transfer between light-harvesting complex I (LH-I) and the photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (Rb.) sphaeroides is investigated on the basis of the atomic level structures of the two proteins, assuming a ring-shaped model for LH-I. Rates of excitation energy transfer are calculated, based on Forster theory. The LH-I and RC electronic excitations are described through effective Hamiltonians established previously, with parameters derived from quantum chemistry calculations by Cory and co-workers. We also present an effective Hamiltonian description with parameters based on spectroscopic properties. We study two extreme models of LH-I excitations: electronic excitations delocalized over the entire LH-I ring and excitations localized on single bacteriochlorophylls. The role of accessory bacteriochlorophylls in bridging the excitation energy transfer is investigated. The rates of back-transfer, i.e., RC LH-I excitation energy transfer, are determined, too. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 139–151, 2000

Journal ArticleDOI
TL;DR: A first hypothesis as to how the planet can provide itself with the chemical potential to split water and generate an oxygen atmosphere using the Chl a macroaromatic cycle is led to.
Abstract: We report 13C magic angle spinning NMR observation of photochemically induced dynamic nuclear spin polarization (photo- CIDNP) in the reaction center (RC) of photosystem II (PS2). The light-enhanced NMR signals of the natural abundance 13C provide information on the electronic structure of the primary electron donor P680 (chlorophyll a molecules absorbing around 680 nm) and on the pz spin density pattern in its oxidized form, P680⨥. Most centerband signals can be attributed to a single chlorophyll a (Chl a) cofactor that has little interaction with other pigments. The chemical shift anisotropy of the most intense signals is characteristic for aromatic carbon atoms. The data reveal a pronounced asymmetry of the electronic spin density distribution within the P680⨥. PS2 shows only a single broad and intense emissive signal, which is assigned to both the C-10 and C-15 methine carbon atoms. The spin density appears shifted toward ring III. This shift is remarkable, because, for monomeric Chl a radical cations in solution, the region of highest spin density is around ring II. It leads to a first hypothesis as to how the planet can provide itself with the chemical potential to split water and generate an oxygen atmosphere using the Chl a macroaromatic cycle. A local electrostatic field close to ring III can polarize the electronic charge and associated spin density and increase the redox potential of P680 by stabilizing the highest occupied molecular orbital, without a major change of color. This field could be produced, e.g., by protonation of the keto group of ring V. Finally, the radical cation electronic structure in PS2 is different from that in the bacterial RC, which shows at least four emissive centerbands, indicating a symmetric spin density distribution over the entire bacteriochlorophyll macrocycle.

Journal ArticleDOI
TL;DR: Results indicate the presence in BChl 663 of a C=C double bond between P6 and P7 in addition to that between P2 and P3, which was concluded to be Chl a esterified with 2,6-phytadienol instead of phytol.
Abstract: The primary electron acceptor of green sulfur bacteria, bacteriochlorophyll (BChl) 663, was isolated at high purity by an improved purification procedure from a crude reaction center complex, and the molecular structure was determined by fast atom bombardment mass spectroscopy (FAB-mass), 1H- and 13C-NMR spectrometry, double quantum filtered correlation spectroscopy (DQF-COSY), heteronuclear multiple-quantum coherence (HMQC) and heteronuclear multiple-bond correlation (HMBC) spectral measurements. BChl 663 was 2.0 mass units smaller than plant Chl a. The NMR spectra showed that the macrocycle was identical to that of Chl a. In the esterifying alcohol, a singlet P71 signal was observed at the high-field side of the singlet P31 signal in BChl 663, while a doublet peak of P71 overlapped that of P111 in Chl a. A signal of P7-proton, seen in Chl a, was lacking, and the P6-proton appeared as a triplet signal near the triplet P2-proton signal in BChl 663. These results indicate the presence in BChl 663 of a C=C double bond between P6 and P7 in addition to that between P2 and P3. The structure of BChl 663 was hence concluded to be Chl a esterified with 2,6-phytadienol instead of phytol. In addition to BChl 663, two molecules of the 132-epimer of BChl a, BChl a′, were found to be present per reaction center, which may constitute the primary electron donor.