scispace - formally typeset
Search or ask a question

Showing papers on "Pseudomonas putida published in 1990"


Journal ArticleDOI
TL;DR: Two anthranilate synthase gene pairs have been identified in Pseudomonas aeruginosa and introduction of an inactivated trpE gene into a phnA mutant abolished residual pyocyanin production, suggesting that thetrpE trpG gene products are capable of providing some anthranILate for pycyanin synthesis.
Abstract: Two anthranilate synthase gene pairs have been identified in Pseudomonas aeruginosa. They were cloned, sequenced, inactivated in vitro by insertion of an antibiotic resistance gene, and returned to P. aeruginosa, replacing the wild-type gene. One anthranilate synthase enzyme participates in tryptophan synthesis; its genes are designated trpE and trpG. The other anthranilate synthase enzyme, encoded by phnA and phnB, participates in the synthesis of pyocyanin, the characteristic phenazine pigment of the organism. trpE and trpG are independently transcribed; homologous genes have been cloned from Pseudomonas putida. The phenazine pathway genes phnA and phnB are cotranscribed. The cloned phnA phnB gene pair complements trpE and trpE(G) mutants of Escherichia coli. Homologous genes were not found in P. putida PPG1, a non-phenazine producer. Surprisingly, PhnA and PhnB are more closely related to E. coli TrpE and TrpG than to Pseudomonas TrpE and TrpG, whereas Pseudomonas TrpE and TrpG are more closely related to E. coli PabB and PabA than to E. coli TrpE and TrpG. We replaced the wild-type trpE on the P. aeruginosa chromosome with a mutant form having a considerable portion of its coding sequence deleted and replaced by a tetracycline resistance gene cassette. This resulted in tryptophan auxotrophy; however, spontaneous tryptophan-independent revertants appeared at a frequency of 10(-5) to 10(6). The anthranilate synthase of these revertants is not feedback inhibited by tryptophan, suggesting that it arises from PhnAB. phnA mutants retain a low level of pyocyanin production. Introduction of an inactivated trpE gene into a phnA mutant abolished residual pyocyanin production, suggesting that the trpE trpG gene products are capable of providing some anthranilate for pyocyanin synthesis.

771 citations


Journal ArticleDOI
TL;DR: Neither sulfate nor nitrate affected chromate reduction either in vitro or with intact cells, and Chromate reductase activity was associated with soluble protein and not with the membrane fraction.
Abstract: Reduction of hexavalent chromium (chromate) to less-toxic trivalent chromium was studied by using cell suspensions and cell-free supernatant fluids from Pseudomonas putida PRS2000. Chromate reductase activity was associated with soluble protein and not with the membrane fraction. The crude enzyme activity was heat labile and showed a Km of 40 microM CrO4(2-). Neither sulfate nor nitrate affected chromate reduction either in vitro or with intact cells.

390 citations


Journal ArticleDOI
TL;DR: The amino acid sequences of proteins encoded by tfdD and tfdE were found to be 63 and 53% identical to those of functionally similar enzymes encoded by clcB and clcD, respectively, from plasmid pAC27 of Pseudomonas putida, suggesting that the absence of a functional trans-chlorodienelactone isomerase may prevent P. putida(pAC27) from utilizing 3,5-dichlorocatechol.
Abstract: Growth of Alcaligenes eutrophus JMP134 on 2,4-dichlorophenoxyacetate requires a 2,4-dichlorphenol hydroxylase encoded by gene tfdB. Catabolism of either 2,4-dichlorophenoxyacetate or 3-chlorobenzoate involves enzymes encoded by the chlorocatechol oxidative operon consisting of tfdCDEF, which converts 3-chloro- and 3,5-dichlorocatechol to maleylacetate and chloromaleylacetate, respectively. Transposon mutagenesis has localized tfdB and tfdCDEF to EcoRI fragment B of plasmid pJP4 (R. H. Don, A. J. Wieghtman, H.-J. Knackmuss, and K. N. Timmis, J. Bacteriol. 161:85-90, 1985). We present the complete nucleotide sequence of tfdB and tfdCDEF contained within a 7,954-base-pair HindIII-SstI fragment from EcoRI fragment B. Sequence and expression analysis of tfdB in Escherichia coli suggested that 2,4-dichlorophenol hydroxylase consists of a single subunit of 65 kilodaltons. The amino acid sequences of proteins encoded by tfdD and tfdE were found to be 63 and 53% identical to those of functionally similar enzymes encoded by clcB and clcD, respectively, from plasmid pAC27 of Pseudomonas putida. P. putida(pAC27) can utilize 3-chlorocatechol but not dichlorinated catechols. A region of DNA adjacent to clcD in pAC27 was found to be 47% identical in amino acid sequence to tfdF, a gene important in catabolizing dichlorocatechols. The region in pAC27 does not appear to encode a protein, suggesting that the absence of a functional trans-chlorodienelactone isomerase may prevent P. putida(pAC27) from utilizing 3,5-dichlorocatechol.

287 citations


Journal ArticleDOI
TL;DR: PA-CoA ligase was specifically induced by PAA when P. putida was grown in a chemically defined medium in which phenylacetic acid was the sole carbon source, suggesting that PA-Coa ligase is a specific enzyme involved in the utilization of PAA as energy source.

207 citations


Journal ArticleDOI
TL;DR: The nucleotide sequence revealed two open reading frames corresponding to the bphC and bphD genes encoding 2,3-dihydroxybiphenyl dioxygenase and 2-hydroxy-6-oxo- 6-phenylhexa-2,4-dienoic acid (ring-meta-cleavage compound) hydrolase.
Abstract: We cloned the entire bphABCD genes encoding degradation of biphenyl and polychlorinated biphenyls to benzoate and chlorobenzoates from the chromosomal DNA of Pseudomonas putida KF715. The nucleotide sequence revealed two open reading frames corresponding to the bphC gene encoding 2,3-dihydroxybiphenyl dioxygenase and the bphD gene encoding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (ring-meta-cleavage compound) hydrolase.

151 citations


Journal ArticleDOI
TL;DR: Observations support the hypothesis that the mandelate pathway evolved by recruitment of enzymes from preexisting metabolic pathways.
Abstract: The genes that encode the five known enzymes of the mandelate pathway of Pseudomonas putida (ATCC 12633), mandelate racemase (mdlA), (S)-mandelate dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), NAD(+)-dependent benzaldehyde dehydrogenase (mdlD), and NADP(+)-dependent benzaldehyde dehydrogenase (mdlE), have been cloned The genes for (S)-mandelate dehydrogenase and benzoylformate decarboxylase have been sequenced; these genes and that for mandelate racemase [Ransom, S C, Gerlt, J A, Powers, V M, & Kenyon, G L (1988) Biochemistry 27, 540] are organized in an operon (mdlCBA) Mandelate racemase has regions of sequence similarity to muconate lactonizing enzymes I and II from P putida (S)-Mandelate dehydrogenase is predicted to be 393 amino acids in length and to have a molecular weight of 43,352; it has regions of sequence similarity to glycolate oxidase from spinach and ferricytochrome b2 lactate dehydrogenase from yeast Benzoylformate decarboxylase is predicted to be 499 amino acids in length and to have a molecular weight of 53,621; it has regions of sequence similarity to enzymes that decarboxylate pyruvate with thiamin pyrophosphate as cofactor These observations support the hypothesis that the mandelate pathway evolved by recruitment of enzymes from preexisting metabolic pathways The gene for benzoylformate decarboxylase has been expressed in Escherichia coli with the trc promoter, and homogeneous enzyme has been isolated from induced cells

147 citations


Journal ArticleDOI
TL;DR: Of the known bacteria and 12 isolates tested, the most effective were nine isolates that significantly increased plant height, root and shoot biomass, and number of tillers, and the plant growth promoting effects of isolates were different in the two soils.
Abstract: The association of winter wheat (Triticum aestivum L. cv. Norstar) with root-colonizing bacteria (rhizobacteria) was studied in potted soil experiments in the growth chamber. Thirty-six known bacteria, some of which have been reported to stimulate plant growth, and 75 isolates obtained from the rhizosphere of winter wheat were tested for their effects on plant growth and development in two different soils. Two known bacteria and 12 isolates stimulated growth of winter wheat. Of these, the most effective were nine isolates that significantly (P < 0.01) increased plant height, root and shoot biomass, and number of tillers. The plant growth promoting effects of isolates were different in the two soils. Three of these strains were tentatively classified as Pseudomonas aeruginosa, and two each as Pseudomonas cepacia, Pseudomonas fluorescens, and Pseudomonas putida. Some isolates induced significant increases in seedling emergence rates and (or) demonstrated antagonism in vitro against Rhizoctonia solani and Le...

124 citations


Journal ArticleDOI
TL;DR: 2-Hydroxymuconic acid semialdehyde could be identified and quantitatively determined as a metabolite of phenol degradation by P. putida P8 and increased membrane permeability under the influence of Phenol was demonstrated by the examination of K+ efflux from P.Putida P7.
Abstract: A defined mixed culture of the yeast Cryptococcus elinovii H1 and the bacterium Pseudomonas putida P8 was immobilized by adsorption on activated carbon and sintered glass, respectively. Depending on its adsorption capacity for phenol the activated carbon system could completely degrade 17 g/l in batch culture, whereas the sintered glass system was able to degrade phenol up to 4 g/l. During semicontinuous degradation of phenol (1 g/l) both systems reached constant degradation times with the fourth batch that lasted 8 h when using the activated carbon system and 10 h in the sintered glass system. In the course of continuous degradation of phenol the activated carbon system reached a maximum degradation rate of 9.2 g l−1 day−1 compared to 6.4 g l−1 day−1degraded by the sintered glass system. 2-Hydroxymuconic acid semialdehyde could be identified and quantitatively determined as a metabolite of phenol degradation by P. putida P8. Increased membrane permeability under the influence of phenol was demonstrated by the examination of K+ efflux from P. putida P8.

97 citations


Journal ArticleDOI
TL;DR: The role of the homologous DNA in copper resistance was confirmed for the X. campestris pv.
Abstract: Copper-resistant strains of Xanthomonas campestris pv. vesicatoria, Pseudomonas cichorii, Pseudomonas putida, Pseudomonas fluorescens, and a yellow Pseudomonas sp. were isolated from tomato plants or seeds. In Southern hybridizations, DNA from each strain showed homology with the copper resistance (cop) operon previously cloned from Pseudomonas syringae pv. tomato PT23. Homology was associated with plasmid and chromosomal DNA in X. compestris pv. vesicatoria, P. putida, and the yellow Pseudomonas sp. Homology was detected only in the chromosomal DNA of P. cichorii and P. fluorescens. Homology with cop was also detected in chromosomal DNA from copper-sensitive strains of P. cichorii, P. fluorescens, and P. syringae pv. tomato, suggesting that the cop homolog may be indigenous to certain Pseudomonas species and have some function other than copper resistance. No homology was detected in DNA from a copper-sensitive X. campestris pv. vesicatoria strain. Copper-inducible protein products were detected in each copper-resistant bacterium by immunoblot analysis with antibodies raised to the CopB protein from the cop operon. The role of the homologous DNA in copper resistance was confirmed for the X. campestris pv. vesicatoria strain by cloning and transferring the cop homolog to a copper-sensitive strain of X. campestris pv. vesicatoria. The possibility and implications of copper resistance gene exchange between different species and genera of pathogenic and saprophytic bacteria on tomato plants are discussed. Images

97 citations


Journal ArticleDOI
31 Jan 1990-Gene
TL;DR: Probing blots of genomic DNA from 13 different polychlorinated biphenyl(PCB)-degrading bacteria with radio-labelled pDA1 and pDA2, suggested that many PCB-degraders pathways have a common phylogenetic origin.

91 citations


Journal ArticleDOI
TL;DR: Evidence proves that the radioactive proteins were actually xanthine dehydrogenase and 2-furoyl-CoA dehydration, which seemed to be similar, although the stoichiometry was not determined.
Abstract: The constitutive xanthine dehydrogenase and the inducible 2-furoyl-coenzyme A (CoA) dehydrogenase could be labeled with [185W]tungstate. This labeling was used as a reporter to purify both labile proteins. The radioactivity cochromatographed predominantly with the residual enzymatic activity of both enzymes during the first purification steps. Both radioactive proteins were separated and purified to homogeneity. Antibodies raised against the larger protein also exhibited cross-reactivity toward the second smaller protein and removed xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase activity up to 80 and 60% from the supernatant of cell extracts, respectively. With use of cell extract, Western immunoblots showed only two bands which correlated exactly with the activity stains for both enzymes after native polyacrylamide gel electrophoresis. Molybdate was absolutely required for incorporation of 185W, formation of cross-reacting material, and enzymatic activity. The latter parameters showed a perfect correlation. This evidence proves that the radioactive proteins were actually xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase. The apparent molecular weight of the native xanthine dehydrogenase was about 300,000, and that of 2-furoyl-CoA dehydrogenase was 150,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both enzymes revealed two protein bands corresponding to molecular weights of 55,000 and 25,000. The xanthine dehydrogenase contained at least 1.6 mol of molybdenum, 0.9 ml of cytochrome b, 5.8 mol of iron, and 2.4 mol of labile sulfur per mol of enzyme. The composition of the 2-furoyl-CoA dehydrogenase seemed to be similar, although the stoichiometry was not determined. The oxidation of furfuryl alcohol to furfural and further to 2-furoic acid by Pseudomonas putida Fu1 was catalyzed by two different dehydrogenases. Images

Journal ArticleDOI
TL;DR: The XylS family consists of a least 8 different transcriptional regulators that seem to be related by common ancestry and may act through similar mechanisms of positive regulation effected through similar folding patterns.
Abstract: The XylS family consists of a least 8 different transcriptional regulators. Six of these proteins are positive regulators for the catabolism of carbon sources (benzoate and sugars) in Escherichia coli, Pseudomonas putida and Erwinia carotovora, and two of them are involved in pathogenesis in Escherichia coli and Yersinia enterocolitica. Based on protein alignments, the members of this family exhibit a long stretch of homology at the C-terminal end. The regulators involved in the catabolism of carbon sources stimulate transcription from their respectively regulated promoters only in the presence of effectors. In two of the regulators, mutations at the non-homologous N-terminus alter affinity and specificity for effectors while mutations at the conserved C-terminus part decrease activation of transcription from their corresponding regulated promoters. It is thus probable that the variable N-terminus end in this family of regulators contains the motif involved in effector recognition, while the C-terminal end is involved in DNA-binding. These proteins seem to be related by common ancestry and may act through similar mechanisms of positive regulation effected through similar folding patterns.

Journal ArticleDOI
TL;DR: These origins comprise a second class of bacterial origins distinct from enteric-type origins: both origins function in both Pseudomonas species, and neither functions in Escherichia coli; enteric origins do not function in either pseudomonad.
Abstract: The bacterial origins of DNA replication have been isolated from Pseudomonas aeruginosa and Pseudomonas putida. These origins comprise a second class of bacterial origins distinct from enteric-type origins: both origins function in both Pseudomonas species, and neither functions in Escherichia coli; enteric origins do not function in either pseudomonad. Both cloned sequences hybridize to chromosomal fragments that show properties expected of replication origins. These origin plasmids are highly unstable, are present at low copy number, and show mutual incompatibility properties. DNA sequence analysis shows that both origins contain several 9-base-pair (bp) E. coli DnaA protein binding sites; four of these are conserved in position and orientation, two of which resemble the R1 and R4 sites of the E. coli origin. Conserved 13-bp direct repeats adjacent to the analogous R1 site are also found. No GATC sites are in the P. aeruginosa origin and only four are in the P. putida origin; no other 4-bp sequence is present in high abundance. Both origins are found between sequences similar to the E. coli and Bacillus subtilis dnaA, dnaN, rpmH, and rnpA genes, a gene organization identical to that for B. subtilis and unlike that of E. coli. A second autonomously replicating sequence was obtained from P. aeruginosa that has some properties of bacterial origins.

Journal ArticleDOI
TL;DR: Plasmid pAC27, encoding enzymes for 3-chlorobenzoate degradation, does not appear to carry genes for chemotaxis toward chlorinated compounds, and these compounds are chemoattractants for Pseudomonas putida PRS2000.
Abstract: The chlorinated aromatic acids 3-chlorobenzoate and 4-chlorobenzoate are chemoattractants for Pseudomonas putida PRS2000. These compounds are detected by a chromosomally encoded chemotactic response to benzoate which is inducible by beta-ketoadipate, an intermediate of benzoate catabolism. Plasmid pAC27, encoding enzymes for 3-chlorobenzoate degradation, does not appear to carry genes for chemotaxis toward chlorinated compounds.

Journal ArticleDOI
TL;DR: Several bacterial cultures were isolated that are able to degrade quinoline and to transform or to degrade methylquinolines and have multiple plasmids including a common 250-kilobase plasmid.
Abstract: Several bacterial cultures were isolated that are able to degrade quinoline and to transform or to degrade methylquinolines. The degradation of quinoline by strains of Pseudomonas aeruginosa QP and P. putida QP produced hydroxyquinolines, a transient pink compound, and other undetermined products. The quinoline-degrading strains of P. aeruginosa QP and P. putida QP hydroxylated a limited number of methylquinolines but could not degrade them, nor could they transform 2-methylquinoline, isoquinoline, or pyridine. Another pseudomonad, Pseudomonas sp. strain MQP, was isolated that could degrade 2-methylquinoline. P. aeruginosa QP was able to degrade or to transform quinoline and a few methylquinolines in a complex heterocyclic nitrogen-containing fraction of a shale oil. All of the quinoline- and methylquinoline-degrading strains have multiple plasmids including a common 250-kilobase plasmid. The 225-, 250-, and 320-kilobase plasmids of the P. aeruginosa QP strain all contained genes involved in quinoline metabolism. Images


Journal ArticleDOI
TL;DR: Pseudomonas putida oxidation of benzene affords cis-3,5-cyclohexadiene-1,2-diol (2) which is used as a novel precursor for the synthesis of D- and L-myo-inositol 1,4, 5-trisphosphates, (-)-(1) and (+)-( 1) as mentioned in this paper.

Journal ArticleDOI
TL;DR: It is shown that the TOL catabolic operons were poorly induced in cells growing at the early-exponential-growth phase but stronglyinduced in cells at late-exp exponential- growth phase, indicating that cyclic AMP and relA-dependent synthesis of ppGpp are not involved in this phenomenon.
Abstract: Pseudomonas putida TOL plasmid pWW0 catabolic genes are clustered into two operons. The first, the upper operon, is controlled by the xylR regulatory gene, whereas the second, the meta operon, is controlled by the xylS regulatory gene. The xylS gene itself is subjected to control by xylR. In this study, we show that the TOL catabolic operons were poorly induced in cells growing at the early-exponential-growth phase but strongly induced in cells at late-exponential-growth phase. We constructed fusions of four TOL promoters, Pm (the promoter of the meta operon), Pu (the promoter of the upper operon), Ps (the promoter of the xylS regulatory gene), and Pr (the promoter of the xylR regulatory gene) with lacZ and examined, in Escherichia coli and P. putida, the expression of these promoters in relation to the growth phase. Expression from Pm, Pu, Ps, and Pr was almost constant if the host cells did not carry either xylS or xylR. Similarly, expression of Pm and Pu in P. putida in the absence of XylS and XylR was constant during the growth of the cells. XylS-dependent transcription of Pm and XylR-dependent transcription of Ps and Pu, in contrast, varied with the growth phase. This observation suggested that the interaction of XylS and XylR with target promoters or with RNA polymerases was influenced by the growth phase. The nature of the signal which triggers the growth-phase-dependent regulation was not clear. A change in the oxygen partial pressure was not responsible for the regulation. E. coli mutants defective in relA, crp, and cya exhibited growth-phase-dependent expression of the TOL catabolic genes, indicating that cyclic AMP and relA-dependent synthesis of ppGpp are not involved in this phenomenon.

Journal ArticleDOI
TL;DR: Results indicate that this biodegradation of formaldehyde by a strain of Pseudomonas putida is initiated by a dismutation reaction, yielding as products formic acid and methanol.
Abstract: Formaldehyde biodegradation by a strain of Pseudomonas putida has been studied. The results indicate that this biodegradation is initiated by a dismutation reaction, yielding as products formic acid and methanol. The degradation of methanol and formic acid begins after exhaustion of formaldehyde in the medium, and presents a diauxic pattern: first formic acid is consumed followed by methanol. Moreover, cell viability, which is affected by the amount of added formaldehyde, has been determined.

Journal ArticleDOI
TL;DR: An understanding of the biodegradative capacity of individual bacterial populations as well as interacting populations of bacteria must be considered in order to gain a better understanding of polychlorinated biphenyl biodegradation in the environment.
Abstract: Comparative studies were performed to investigate the contribution of microbial consortia, individual microbial populations, and specific plasmids to chlorinated biphenyl biodegradation among microbial communities from a polychlorinated biphenyl-contaminated freshwater environment. A bacterial consortium, designated LPS10, was shown to mineralize 4-chlorobiphenyl (4CB) and dehalogenate 4,4'-dichlorobiphenyl. The LPS10 consortium involved three isolates: Pseudomonas testosteroni (LPS10A), which mediated the breakdown of 4CB and 4,4'-dichlorobiphenyl to 4-chlorobenzoic acid; an isolate tentatively identified as an Arthrobacter sp. (LPS10B), which mediated 4-chlorobenzoic acid degradation; and Pseudomonas putida bv. A (LPS10C), whose role in the consortium has not been determined. None of these isolates contained detectable plasmids or sequences homologous to the 4CB-degradative plasmid pSS50. A freshwater isolate, designated LBS1C1, was found to harbor a 41-megadalton plasmid that was related to the 35-megadalton plasmid pSS50, and this isolate was shown to mineralize 4CB. In chemostat enrichments with biphenyl and 4CB as primary carbon sources, the LPS10 consortium was found to outcomplete bacterial populations harboring plasmids homologous to pSS50. These results demonstrate that an understanding of the biodegradative capacity of individual bacterial populations as well as interacting populations of bacteria must be considered in order to gain a better understanding of polychlorinated biphenyl biodegradation in the environment.

Journal ArticleDOI
TL;DR: 3-Chlorobiphenyl-degrading bacteria were obtained from the mating between Pseudomonas putida strain BN10 and PseUDomonas sp.
Abstract: 3-Chlorobiphenyl-degrading bacteria were obtained from the mating between Pseudomonas putida strain BN10 and Pseudomonas sp. strain B13. Strains such as BN210 resulted from the transfer of the genes coding the enzyme sequence for the degradation of chlorocatechols from B13 into BN10, whereas B13 derivatives such as B131 have acquired the biphenyl degradation sequence from BN10. During growth of the hybrid strains on 3-chlorobiphenyl 90% chloride was released. Activities of phenylcatechol 2,3-dioxygenase, benzoate dioxygenase, catechol 1,2-dioxygenase, chloromuconate cyloisomerase and 4-carboxymethyl-enebut-2-en-4-olide hydrolase were found in 3-chlorobiphenyl-grown cells. The hybrid strains were found to convert some congeners of the Aroclor 1221 mixture such as mono- and dichloro-substituted biphenyls.

Journal ArticleDOI
TL;DR: This work purified and characterized the three proteins from a P-450-dependent linalool 8-methyl hydroxylase in Pseudomonas putida (incognita) strain PpG777, and found that they resemble the camphor 5-exohydroxyl enzyme components in chemical and physical properties.

Journal ArticleDOI
01 Jul 1990-Plasmid
TL;DR: The formation of a new hybrid metabolic plasmid, pEST1354, was demonstrated in P. putida PaW85 as the result of transposition of the 17-kb genetic element from the chromosome of PaW 85 into the plasmids carrying cloned phe genes.

Journal ArticleDOI
TL;DR: A D-2-haloacid dehalogenase was isolated and purified to homogeneity from Pseudomonas putida strain AJ1/23 and found to catalyse the dehalagenation of short-chain 2-halocarboxylic acids.
Abstract: SUMMARY: A d-2-haloacid dehalogenase was isolated and purified to homogeneity from Pseudomonas putida strain AJ1/23. The enzyme catalysed the stereospecific dehalogenation of the d-isomer of 2-chloropropionate. Using a new ionchromatograph assay, the enzyme was found to catalyse the dehalogenation of short-chain 2-halocarboxylic acids. Maximum enzyme activity occurred at pH 9·5 and 50 °C and the enzyme was insensitive to most -SH reagents. The enzyme has an Mr of about 135000 and appears to be composed of four subunits of identical Mr.

Journal ArticleDOI
TL;DR: The hutC gene of Pseudomonas putida encodes a repressor which, in combination with the inducer urocanate, regulates expression of the five structural genes necessary for conversion of histidine to glutamate, ammonia, and formate.
Abstract: The hutC gene of Pseudomonas putida encodes a repressor which, in combination with the inducer urocanate, regulates expression of the five structural genes necessary for conversion of histidine to glutamate, ammonia, and formate. The nucleotide sequence of the hutC region was determined and found to contain two open reading frames which overlapped by one nucleotide. The first open reading frame (ORF1) appeared to encode a 27,648-dalton protein of 248 amino acids whose sequence strongly resembled that of the hut repressor of Klebsiella aerogenes (A. Schwacha and R. A. Bender, J. Bacteriol. 172:5477-5481, 1990) and contained a helix-turn-helix motif that could be involved in operator binding. The gene was preceded by a sequence which was nearly identical to that of the operator site located upstream of hutU which controls transcription of the hutUHIG genes. The operator near hutC would presumably allow the hut repressor to regulate its own synthesis as well as the expression of the divergent hutF gene. A second open reading frame (ORF2) would encode a 21,155-dalton protein, but because this region could be deleted with only a slight effect on repressor activity, it is not likely to be involved in repressor function or structure.

Journal ArticleDOI
TL;DR: A simple aquatic microcosm that utilizes survival chambers in a flowthrough or static renewal system was used to study the survival of genetically engineered and wild-type strains of Escherichia coli and Pseudomonas putida in the lake water environment.
Abstract: Laboratory-contained microcosms are important for studying the fate and survival of genetically engineered microorganisms. In this study, we describe a simple aquatic microcosm that utilizes survival chambers in a flowthrough or static renewal system. The model was used to study the survival of genetically engineered and wild-type strains of Escherichia coli and Pseudomonas putida in the lake water environment. Temperature-dependent studies indicated that the genetically engineered microorganisms survived better or at least as well as their wild-type counterparts at 15, 25, and 30 degrees C. The genetic determinants of the genetically engineered microorganisms also remained fairly stable within the host cell under the tested conditions. In the presence of organisms indigenous to lake water, E. coli was eliminated after 20 days, whereas P. putida showed an initial decline but was able to stabilize its population after 5 days. A herbicide, Hydrothol-191, caused a significant decline in numbers of P. putida, but no significant difference was observed between the genetically engineered microorganisms and the wild-type strain. The microcosm described is simple, can be easily adapted to study a variety of environmental variables, and has the advantage that the organisms tested are constantly exposed to test waters that are continuously renewed.

Journal ArticleDOI
TL;DR: Microorganisms utilizing an opine as the sole carbon source were recovered from crown gall tumors, soil, and surface-disinfected potato tubers and selection on octopine and indoleacetic acid favored the fluorescent pseudomonads, whereas mannopine allowed the frequent recovery of agrobacteria.
Abstract: Microorganisms utilizing an opine as the sole carbon source were recovered from crown gall tumors, soil, and surface-disinfected potato tubers. The effect of the opines octopine, nopaline, succinamopine, and mannopine as selective substrates was compared with that of the auxin indoleacetic acid. Selection on octopine and indoleacetic acid favored the fluorescent pseudomonads, whereas mannopine allowed the frequent recovery of agrobacteria. Coryneforms which utilized succinamopine or mannopine were detected in soil, but not in tumors. Fungi growing on succinamopine or mannopine and a mannopine-utilizing Pseudomonas putida were isolated from tumor and soil, respectively.

Journal ArticleDOI
TL;DR: A strain of Pseudomonas putida was isolated by selective enrichment with morphine that was capable of utilising morphine as a primary source of carbon and energy for growth and was shown to be capable of oxidising morphine and codeine to morphinone and codeinone, respectively.
Abstract: A strain of Pseudomonas putida was isolated by selective enrichment with morphine that was capable of utilising morphine as a primary source of carbon and energy for growth. Experiments with whole cells showed that both morphine and codeine, but not thebaine, could be utilised. A novel NADP-dependent dehydrogenase, morphine dehydrogenase, was purified from crude cell extracts and was shown to be capable of oxidising morphine and codeine to morphinone and codeinone, respectively. This NADP-dependent morphine dehydrogenase was not observed in any other species of pseudomonads examined and was quite distinct from the β-hydroxysteroid dehydrogenase found in Pseudomonas testosteroni, which had previously been shown to have activity against morphine.

Journal ArticleDOI
TL;DR: The sequences of the anthranilate synth enzyme genes in the fluorescent pseudomonads resemble those of p-aminobenzoate synthase genes of the enteric bacteria more closely than the anthanilatesynthetic genes of those organisms; however, no requirement for p-aminsobenzosate was found in the Pseudomonas mutants created in this study.
Abstract: Pseudomonas putida possesses seven structural genes for enzymes of the tryptophan pathway. All but one, trpG, which encodes the small (beta) subunit of anthranilate synthase, have been mapped on the circular chromosome. This report describes the cloning and sequencing of P. putida trpE, trpG, trpD, and trpC. In P. putida and Pseudomonas aeruginosa, DNA sequence analysis as well as growth and enzyme assays of insertionally inactivated strains indicated that trpG is the first gene in a three-gene operon that also contains trpD and trpC. In P. putida, trpE is 2.2 kilobases upstream from the trpGDC cluster, whereas in P. aeruginosa, they are separated by at least 25 kilobases (T. Shinomiya, S. Shiga, and M. Kageyama, Mol. Gen. Genet., 189:382-389, 1983). The DNA sequence in P. putida shows an open reading frame on the opposite strand between trpE and trpGDC; this putative gene was not characterized. Evidence is also presented for sequence similarities in the 5' untranslated regions of trpE and trpGDC in both pseudomonads; the function of these regions is unknown, but it is possible that they play some role in regulation of these genes, since all the genes respond to repression by tryptophan. The sequences of the anthranilate synthase genes in the fluorescent pseudomonads resemble those of p-aminobenzoate synthase genes of the enteric bacteria more closely than the anthranilate synthase genes of those organisms; however, no requirement for p-aminobenzoate was found in the Pseudomonas mutants created in this study.