scispace - formally typeset
Search or ask a question

Showing papers on "Receptive field published in 2007"


Journal ArticleDOI
25 Oct 2007-Neuron
TL;DR: Recent measurements of human visual field maps are surveyed, hypotheses about the function and relationships between maps are described, and methods to improve map measurements and characterize the response properties of neurons comprising these maps are considered.

1,104 citations


Journal ArticleDOI
15 Nov 2007-Nature
TL;DR: This restricted period of disinhibition in the adult primary auditory cortex may be a fundamental mechanism for receptive field plasticity, and could serve as a memory trace for stimuli or episodes that have acquired new behavioural significance.
Abstract: Receptive fields of sensory cortical neurons are plastic, changing in response to alterations of neural activity or sensory experience. In this way, cortical representations of the sensory environment can incorporate new information about the world, depending on the relevance or value of particular stimuli. Neuromodulation is required for cortical plasticity, but it is uncertain how subcortical neuromodulatory systems, such as the cholinergic nucleus basalis, interact with and refine cortical circuits. Here we determine the dynamics of synaptic receptive field plasticity in the adult primary auditory cortex (also known as AI) using in vivo whole-cell recording. Pairing sensory stimulation with nucleus basalis activation shifted the preferred stimuli of cortical neurons by inducing a rapid reduction of synaptic inhibition within seconds, which was followed by a large increase in excitation, both specific to the paired stimulus. Although nucleus basalis was stimulated only for a few minutes, reorganization of synaptic tuning curves progressed for hours thereafter: inhibition slowly increased in an activity-dependent manner to rebalance the persistent enhancement of excitation, leading to a retuned receptive field with new preference for the paired stimulus. This restricted period of disinhibition may be a fundamental mechanism for receptive field plasticity, and could serve as a memory trace for stimuli or episodes that have acquired new behavioural significance.

584 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used triple pathway tracing combined with receptive field recordings to map azimuth and elevation in the same brain and have referenced these maps against callosal landmarks.
Abstract: It is controversial whether mouse extrastriate cortex has a “simple” organization in which lateral primary visual cortex (V1) is adjoined by a single area V2 or has a “complex” organization, in which lateral V1 is adjoined by multiple distinct areas, all of which share the vertical meridian with V1. Resolving this issue is important for understanding the evolution and development of cortical arealization. We have used triple pathway tracing combined with receptive field recordings to map azimuth and elevation in the same brain and have referenced these maps against callosal landmarks. We found that V1 projects to 15 cortical fields. At least nine of these contain maps with complete and orderly representations of the entire visual hemifield and therefore represent distinct areas. One of these, PM, adjoins V1 at the medial border. Five areas, P, LM, AL, RL, and A, adjoin V1 on the lateral border, but only LM shares the vertical meridian representation with V1. This suggests that LM is homologous to V2 and that the lateral extrastriate areas do not represent modules within a single area V2. Thus, mouse visual cortex is “simple” in the sense that lateral V1 is adjoined by a single V2-like area, LM, and “complex” in having a string of areas in lateral extrastriate cortex, which receive direct V1 input. The results suggest that large numbers of areas with topologically equivalent maps of the visual field emerge early in evolution and that homologous areas are inherited in different mammalian lineages. J. Comp. Neurol. 502:339–357, 2007. © 2007 Wiley-Liss, Inc.

464 citations


Journal ArticleDOI
TL;DR: It is suggested that, whereas cortical regions within the posterior IPS and LOC represent hand-centered space in a predominantly visual manner, the anterior IPS uses multisensory information in representing perihand space.
Abstract: Our ability to interact with the immediate surroundings depends not only on an adequate representation of external space but also on our ability to represent the location of objects with respect to our own body and especially to our hands. Indeed, electrophysiological studies in monkeys revealed multimodal neurons with spatially corresponding tactile and visual receptive fields in a number of brain areas, suggesting a representation of visual peripersonal space with respect to the body. In this functional magnetic resonance imaging study, we localized areas in human intraparietal sulcus (IPS) and lateral occipital complex (LOC) that represent nearby visual space with respect to the hands (perihand space), by contrasting the response to a ball moving near-to versus far-from the hands. Furthermore, by independently manipulating sensory information about the hand, in the visual (using a dummy hand) and proprioceptive domains (by changing the unseen hand position), we determined the sensory contributions to the representation of hand-centered space. In the posterior IPS, the visual contribution was dominant, overriding proprioceptive information. Surprisingly, regions within LOC also displayed visually dominant, hand-related activation. In contrast, the anterior IPS was characterized by a proprioceptive representation of the hand, as well as showing tactile hand-specific activation, suggesting a homology with monkey parietal hand-centered areas. We therefore suggest that, whereas cortical regions within the posterior IPS and LOC represent hand-centered space in a predominantly visual manner, the anterior IPS uses multisensory information in representing perihand space.

363 citations


Journal ArticleDOI
TL;DR: Analysis of receptive field parameters beyond characteristic frequency revealed independent spatially ordered representations for features related to spectral tuning, intensity tuning, and onset response properties in AI, AAF, VAF, and SRAF.
Abstract: The auditory cortex of the rat is becoming an increasingly popular model system for studies of experience-dependent receptive field plasticity. However, the relative position of various fields within the auditory core and the receptive field organization within each field have yet to be fully described in the normative case. In this study, the macro- and micro-organizational features of the auditory cortex were studied in pentobarbital-anesthetized adult rats with a combination of physiological and anatomical methods. Dense microelectrode mapping procedures were used to identify the relative position of five tonotopically organized fields within the auditory core: primary auditory cortex (AI), the posterior auditory field (PAF), the anterior auditory field (AAF), the ventral auditory field (VAF), and the suprarhinal auditory field (SRAF). AI and AAF both featured short-latency, sharply tuned responses with predominantly monotonic intensity-response functions. SRAF and PAF were both characterized by longer-latency, broadly tuned responses. VAF directly abutted the ventral boundary of AI but was almost exclusively composed of low-threshold nonmonotonic intensity-tuned responses. Dual injection of retrograde tracers into AI and VAF was used to demonstrate that the sources of thalamic input from the medial geniculate body to each area were essentially nonoverlapping. An analysis of receptive field parameters beyond characteristic frequency revealed independent spatially ordered representations for features related to spectral tuning, intensity tuning, and onset response properties in AI, AAF, VAF, and SRAF. These data demonstrate that despite its greatly reduced physical scale, the rat auditory cortex features a surprising degree of organizational complexity and detail.

296 citations


Journal ArticleDOI
TL;DR: It is shown that the majority of VIP neurons perform multisensory integration, following general rules (e.g., spatial congruency and temporal synchrony) that are closely similar to those described in other cortical and subcortical regions.
Abstract: The goal of this study was to characterize multisensory interaction patterns in cortical ventral intraparietal area (VIP). We recorded single-unit activity in two alert monkeys during the presentation of visual (drifting gratings) and tactile (low-pressure air puffs) stimuli. One stimulus was always positioned inside the receptive field of the neuron. The other stimulus was defined so as to manipulate the spatial and temporal disparity between the two stimuli. More than 70% of VIP cells showed a significant modulation of their response by bimodal stimulations. These cells included both bimodal cells, i.e., cells responsive to both tested modalities, and seemingly unimodal cells, i.e., cells responding to only one of the two tested modalities. This latter observation suggests that postsynaptic latent mechanisms are involved in multisensory integration. In both cell categories, neuronal responses are either enhanced or depressed and reflect nonlinear sub-, super-, or additive mechanisms. The occurrence of these observations is maximum when stimuli are in temporal synchrony and spatially congruent. Interestingly, introducing spatial or temporal disparities between stimuli does not affect the sign or the magnitude of interactions but rather their occurrence. Multisensory stimulation also affects the neuronal response latencies of bimodal stimuli. For a given neuron, these are on average intermediate between the two unimodal response latencies, again suggesting latent postsynaptic mechanisms. In summary, we show that the majority of VIP neurons perform multisensory integration, following general rules (e.g., spatial congruency and temporal synchrony) that are closely similar to those described in other cortical and subcortical regions.

256 citations


Journal ArticleDOI
TL;DR: An experimental study of lateral displacement of ganglion cells from foveal cones in six human retinas is reported and a new theoretical model indicates that the discrepancies in reports are mainly due to meridional differences.

247 citations


Journal ArticleDOI
TL;DR: Results indicate that V2 neurons could play an important role in analyzing contours and textures and could provide useful cues for surface segmentation.
Abstract: Contours and textures are important attributes of object surfaces, and are often described by combinations of local orientations in visual images. To elucidate the neural mechanisms underlying contour and texture processing, we examined receptive field (RF) structures of neurons in visual area V2 of the macaque monkey for encoding combinations of orientations. By measuring orientation tuning at several locations within the classical RF, we found that a majority (70%) of V2 neurons have similar orientation tuning throughout the RF. However, many others have RFs containing subregions tuned to different orientations, most commonly about 90° apart. By measuring interactions between two positions within the RF, we found that approximately one-third of neurons show inhibitory interactions that make them selective for combinations of orientations. These results indicate that V2 neurons could play an important role in analyzing contours and textures and could provide useful cues for surface segmentation.

242 citations


Journal ArticleDOI
05 Jul 2007-Neuron
TL;DR: Different dynamics of the oscillating activity in the visual cortex indicate a fundamental distinction in the circuits underlying selectivity for position and orientation, two key stimulus attributes.

235 citations


Journal ArticleDOI
TL;DR: It is shown, for the first time, that a population of neurons in the lateral intraparietal area of monkeys encodes the total number of elements within their classical receptive fields in a graded fashion, across a wide range of numerical values.
Abstract: As any child knows, the first step in counting is summing up individual elements, yet the brain mechanisms responsible for this process remain obscure. Here we show, for the first time, that a population of neurons in the lateral intraparietal area of monkeys encodes the total number of elements within their classical receptive fields in a graded fashion, across a wide range of numerical values (2–32). Moreover, modulation of neuronal activity by visual quantity developed rapidly, within 100 ms of stimulus onset, and was independent of attention, reward expectations, or stimulus attributes such as size, density, or color. The responses of these neurons resemble the outputs of “accumulator neurons” postulated in computational models of number processing. Numerical accumulator neurons may provide inputs to neurons encoding specific cardinal values, such as “4,” that have been described in previous work. Our findings may explain the frequent association of visuospatial and numerical deficits following damage to parietal cortex in humans.

230 citations


Journal ArticleDOI
TL;DR: This study provides clear evidence that visual events of subsecond duration are timed by visual neural mechanisms with spatially circumscribed receptive fields, localized in real-world, rather than retinal, coordinates.
Abstract: It is generally assumed that perceptual events are timed by a centralized supramodal clock. This study challenges this notion in humans by providing clear evidence that visual events of subsecond duration are timed by visual neural mechanisms with spatially circumscribed receptive fields, localized in real-world, rather than retinal, coordinates.

Journal ArticleDOI
TL;DR: A novel network model is proposed in which the number of active neurones, rather than mean neuronal activity, is limited and this form of hard sparseness economises cortical resources like synaptic memory and metabolic energy.
Abstract: Computational models of primary visual cortex have demonstrated that principles of efficient coding and neuronal sparseness can explain the emergence of neurones with localised oriented receptive fields. Yet, existing models have failed to predict the diverse shapes of receptive fields that occur in nature. The existing models used a particular "soft" form of sparseness that limits average neuronal activ- ity. Here we study models of efficient coding in a broader context by comparing soft and "hard" forms of neuronal sparseness. As a result of our analyses, we propose a novel network model for visual cortex. The model forms efficient visual rep- resentations in which the number of active neurones, rather than mean neuronal activity, is limited. This form of hard sparseness also economises cortical resources like synaptic memory and metabolic energy. Furthermore, our model ac- curately predicts the distribution of receptive field shapes found in the primary visual cortex of cat and monkey.

Journal ArticleDOI
TL;DR: It is found that Mas-related G protein–coupled receptor B4 marks a rare subpopulation of unmyelinated, nonpeptidergic sensory fibers that exclusively innervate hairy skin, suggesting that MrgprB4 may provide genetic access to these elusive neurons in mice.
Abstract: C-fiber tactile afferents are a subpopulation of unmyelinated cutaneous sensory neurons activated by gentle stroking. Using a genetically encoded tracer, we found that Mas-related G protein–coupled receptor B4 marks a rare subpopulation of unmyelinated, nonpeptidergic sensory fibers that exclusively innervate hairy skin. These fibers terminate in large arborizations similar in size and distribution to C-fiber tactile afferent receptive fields, suggesting that MrgprB4 may provide genetic access to these elusive neurons in mice.

Journal ArticleDOI
TL;DR: It is shown that ON and OFF RGCs generate maintained activity through different mechanisms: ON cells depend on tonic excitatory input to drive resting activity, whereas OFF cells continue to fire in the absence of synaptic input.
Abstract: Neuronal discharge is driven by either synaptic input or cell-autonomous intrinsic pacemaker activity. It is commonly assumed that the resting spike activity of retinal ganglion cells (RGCs), the output cells of the retina, is driven synaptically, because retinal photoreceptors and second-order cells tonically release neurotransmitter. Here we show that ON and OFF RGCs generate maintained activity through different mechanisms: ON cells depend on tonic excitatory input to drive resting activity, whereas OFF cells continue to fire in the absence of synaptic input. In addition to spontaneous activity, OFF cells exhibit other properties of pacemaker neurons, including subthreshold oscillations, burst firing, and rebound excitation. Thus, variable weighting of synaptic mechanisms and intrinsic properties underlies differences in the generation of maintained activity in these parallel retinal pathways.

Journal ArticleDOI
TL;DR: The present study of peripheral primate retina reveals that despite their distinctive morphology and chromatic properties, SBCs exhibit two features of other retinal ganglion cell types: center-surround antagonism and regular mosaic sampling of visual space.
Abstract: The primate visual system consists of parallel pathways initiated by distinct cell types in the retina that encode different features of the visual scene. Small bistratified cells (SBCs), which form a major projection to the thalamus, exhibit blue-ON/yellow-OFF [S-ON/(L+M)-OFF] light responses thought to be important for high-acuity color vision. However, the spatial processing properties of individual SBCs and their spatial arrangement across the visual field are poorly understood. The present study of peripheral primate retina reveals that contrary to previous suggestions, SBCs exhibit center-surround spatial structure, with the (L+M)-OFF component of the receptive field ∼50% larger in diameter than the S-ON component. Analysis of response kinetics shows that the (L+M)-OFF response in SBCs is slower than the S-ON response and significantly less transient than that of simultaneously recorded OFF-parasol cells. The (L+M)-OFF response in SBCs was eliminated by bath application of the metabotropic glutamate receptor agonist l-APB. These observations indicate that the (L+M)-OFF response of SBCs is not formed by OFF-bipolar cell input as has been suspected and suggest that it arises from horizontal cell feedback. Finally, the receptive fields of SBCs form orderly mosaics, with overlap and regularity similar to those of ON-parasol cells. Thus, despite their distinctive morphology and chromatic properties, SBCs exhibit two features of other retinal ganglion cell types: center-surround antagonism and regular mosaic sampling of visual space.

Journal ArticleDOI
TL;DR: A new method for silencing cortex by competitively activating GABAA while blocking GABAB receptors is developed, which helps clarify the functional roles of feedforward thalamocortical and recurrent intracortical inputs and may ensure a faithful conveyance of sensory information.
Abstract: Neurons in the recipient layers of sensory cortices receive excitatory input from two major sources: the feedforward thalamocortical and recurrent intracortical inputs. To address their respective functional roles, we developed a new method for silencing cortex by competitively activating GABA(A) while blocking GABA(B) receptors. In the rat primary auditory cortex, in vivo whole-cell recording from the same neuron before and after local cortical silencing revealed that thalamic input occupied the same area of frequency-intensity tonal receptive field as the total excitatory input, but showed a flattened tuning curve. In contrast, excitatory intracortical input was sharply tuned with a tuning curve that closely matched that of suprathreshold responses. This can be attributed to a selective amplification of cortical cells' responses at preferred frequencies by intracortical inputs from similarly tuned neurons. Thus, weakly tuned thalamocortical inputs determine the subthreshold responding range, whereas intracortical inputs largely define the tuning. Such circuits may ensure a faithful conveyance of sensory information.

Journal ArticleDOI
TL;DR: The presence of an attention-triggered plasticity algorithm in A1 that can swiftly change STRF shape by transforming receptive fields to enhance figure/ground separation, by using a contrast matched filter to filter out the background, while simultaneously enhancing the salient acoustic target in the foreground is suggested.

Journal ArticleDOI
TL;DR: Combining VSD and CaSD measurements can be used to specify the temporal and spatial relationships between subthreshold and suprathreshold activity of the neocortex.
Abstract: Cortical dynamics can be imaged at high spatiotemporal resolution with voltage-sensitive dyes (VSDs) and calcium-sensitive dyes (CaSDs). We combined these two imaging techniques using epifluorescence optics together with whole cell recordings to measure the spatiotemporal dynamics of activity in the mouse somatosensory barrel cortex in vitro and in the supragranular layers in vivo. The two optical signals reported distinct aspects of cortical function. VSD fluorescence varied linearly with membrane potential and was dominated by subthreshold postsynaptic potentials, whereas the CaSD signal predominantly reflected local action potential firing. Combining VSDs and CaSDs allowed us to monitor the synaptic drive and the spiking activity of a given area at the same time in the same preparation. The spatial extent of the two dye signals was different, with VSD signals spreading further than CaSD signals, reflecting broad subthreshold and narrow suprathreshold receptive fields. Importantly, the signals from the dyes were differentially affected by pharmacological manipulations, stimulation strength, and depth of isoflurane anesthesia. Combined VSD and CaSD measurements can therefore be used to specify the temporal and spatial relationships between subthreshold and suprathreshold activity of the neocortex.

Journal ArticleDOI
TL;DR: Functional magnetic resonance imaging is used to study spatial selectivity in the human middle temporal cortex (area MT or V5), an area that is clearly implicated in motion perception and shows that the response of MT is modulated by gaze direction, generating a spatialSelectivity based on screen rather than retinal coordinates.
Abstract: Many neurons in the monkey visual extrastriate cortex have receptive fields that are affected by gaze direction. In humans, psychophysical studies suggest that motion signals may be encoded in a spatiotopic fashion. Here we use functional magnetic resonance imaging to study spatial selectivity in the human middle temporal cortex (area MT or V5), an area that is clearly implicated in motion perception. The results show that the response of MT is modulated by gaze direction, generating a spatial selectivity based on screen rather than retinal coordinates. This area could be the neurophysiological substrate of the spatiotopic representation of motion signals.

Journal ArticleDOI
TL;DR: The view that the forms of plasticity are task dependent is supported by ongoing studies in which auditory learning involves CS-specific decreases in threshold or bandwidth without affecting frequency tuning.

Journal ArticleDOI
TL;DR: Critical elements of the computations underlying pattern-direction selectivity in MT are done locally, on a scale smaller than the whole receptive field, indicating that motion information is really integrated across this whole area.
Abstract: Direction-selective neurons in primary visual cortex have small receptive fields that encode the motions of local features. These motions often differ from the motion of the object to which they belong and must therefore be integrated elsewhere. A candidate site for this integration is visual cortical area MT (V5), in which cells with large receptive fields compute the motion of patterns. Previous studies of motion integration in MT have used stimuli that fill the receptive field, and thus do not test whether motion information is really integrated across this whole area. For each MT neuron, we identified two regions ("patches") within the receptive field that were approximately equally effective in driving responses. We then measured responses to plaids whose component gratings overlapped within a patch, and compared them with responses to the same component gratings presented in separate patches. Cells that were selective for the direction of motion of the whole pattern when the gratings overlapped lost this selectivity when the gratings were separated and became selective instead for the direction of motion of the individual components. If MT cells simply pooled all of the inputs that endow them with a receptive field, they would encode all of the motions in the receptive field as belonging to a single object. Our results indicate instead that critical elements of the computations underlying pattern-direction selectivity in MT are done locally, on a scale smaller than the whole receptive field.

Journal ArticleDOI
TL;DR: The spatial and temporal resolution of cortical surface recordings suggest that this technique is well suited to examine further issues in visual processing in humans, and the cortical magnification factor in early human visual cortex is estimated.
Abstract: Most of our understanding of the functional organization of human visual cortex comes from lesion and functional imaging studies and by extrapolation from results obtained by neuroanatomical and neurophysiological studies in nonhuman primates. Although some single-unit and field potential recordings have been made in human visual cortex, none has provided quantitative characterization of spatial receptive fields (RFs) of individual sites. Here we use subdural electrodes implanted for clinical purposes to quantitatively measure response properties in different regions of human visual cortex. We find significant differences in RF size, response latency, and response magnitude for sites in early visual areas, versus sites in later stages of both the dorsal and ventral streams. In addition, we use this technique to estimate the cortical magnification factor in early human visual cortex. The spatial and temporal resolution of cortical surface recordings suggest that this technique is well suited to examine further issues in visual processing in humans.

Journal ArticleDOI
TL;DR: The observed comb filter plasticity is an example of an adaptive contrast matched filter, which may generally improve discriminability between foreground and background sounds and, it is conjecture, may predict A1 cortical plasticity for any complex spectral target.
Abstract: Receptive fields in primary auditory cortex (A1) can be rapidly and adaptively reshaped to enhance responses to salient frequency cues when using single tones as targets. To explore receptive field changes to more complex spectral patterns, we trained ferrets to detect variable, multitone targets in the context of background, rippled noise. Recordings from A1 of behaving ferrets showed a consistent pattern of plasticity, at both the single-neuron level and the population level, with enhancement for each component tone frequency and suppression for intertone frequencies. Plasticity was strongest near neuronal best frequency, rapid in onset, and slow to fade. Although attention may trigger cortical plasticity, the receptive field changes persisted after the behavioral task was completed. The observed comb filter plasticity is an example of an adaptive contrast matched filter, which may generally improve discriminability between foreground and background sounds and, we conjecture, may predict A1 cortical plasticity for any complex spectral target.

Journal ArticleDOI
TL;DR: It is found that the refinement of ipsilateral eye retinotopy is retarded by contralateral deprivation, but accelerated by silencing of thecontralateral eye, indicating that experience-dependent binocular plasticity occurs much earlier than was previously thought.
Abstract: Visual experience begins at eye opening, but current models consider cortical circuitry to be resistant to experience-dependent competitive modification until the activation of a later critical period. Here we examine this idea using optical imaging to map the time course of receptive field refinement in normal mice, mice in which the contralateral eye never opens and mice in which the contralateral eye is silenced. We found that the refinement of ipsilateral eye retinotopy is retarded by contralateral deprivation, but accelerated by silencing of the contralateral eye. Patterned visual experience through the ipsilateral eye is required for this acceleration. These differences are most obvious at postnatal day 15, long before the start of the critical period, indicating that experience-dependent binocular plasticity occurs much earlier than was previously thought. Furthermore, these results suggest that the quality of activity, in terms of signal to noise, and not the quantity, determines robust receptive field development.

Journal ArticleDOI
TL;DR: Small increases in ongoing balanced network activity that result in depolarization may provide a rapid and generalized mechanism to control the responsiveness (gain) of cortical neurons, such as occurs during shifts in spatial attention.
Abstract: Spontaneous activity within local circuits affects the integrative properties of neurons and networks. We have previously shown that neocortical network activity exhibits a balance between excitatory and inhibitory synaptic potentials, and such activity has significant effects on synaptic transmission, action potential generation, and spike timing. However, whether such activity facilitates or reduces sensory responses has yet to be clearly determined. We examined this hypothesis in the primary visual cortex in vivo during slow oscillations in ketamine-xylazine anesthetized cats. We measured network activity (Up states) with extracellular recording, while simultaneously recording postsynaptic potentials (PSPs) and action potentials in nearby cells. Stimulating the receptive field revealed that spiking responses of both simple and complex cells were significantly enhanced (>2-fold) during network activity, as were spiking responses to intracellular injection of varying amplitude artificial conductance stimuli. Visually evoked PSPs were not significantly different in amplitude during network activity or quiescence; instead, spontaneous depolarization caused by network activity brought these evoked PSPs closer to firing threshold. Further examination revealed that visual responsiveness was gradually enhanced by progressive membrane potential depolarization. These spontaneous depolarizations enhanced responsiveness to stimuli of varying contrasts, resulting in an upward (multiplicative) scaling of the contrast response function. Our results suggest that small increases in ongoing balanced network activity that result in depolarization may provide a rapid and generalized mechanism to control the responsiveness (gain) of cortical neurons, such as occurs during shifts in spatial attention.

Journal ArticleDOI
TL;DR: In this paper, the authors showed that attention can selectively enhance neuronal responses and exclude external noise, but the neuronal computations that underlie these effects remain unknown, and that noise exclusion might result in altered spatial integration properties.
Abstract: Attention can selectively enhance neuronal responses and exclude external noise, but the neuronal computations that underlie these effects remain unknown. At the neuronal level, noise exclusion might result in altered spatial integration properties. We tested this proposal by recording neuronal activity and length tuning in neurons of the primary visual cortex of the macaque when attention was directed toward or away from stimuli presented in each neuron's classical receptive field. For cells with central-parafoveal receptive fields, attention reduced spatial integration, as demonstrated by a reduction in preferred stimulus length and in the size of the spatial summation area. Conversely, in cells that represented more peripheral locations, attention increased spatial integration by increasing the cell's summation area. This previously unknown dichotomy between central and peripheral vision could support accurate analysis of attended foveal objects and target selection for impending eye movements to peripheral objects.

Journal ArticleDOI
TL;DR: The precision in stimulus-linked firing in the LGN appears as an emergent factor from the corticothalamic interaction, and it is suggested that the precision in response pattern of cells with and without feedback is similar.
Abstract: There is a tightly coupled bidirectional interaction between visual cortex and visual thalamus [lateral geniculate nucleus (LGN)]. Using drifting sinusoidal grating stimuli, we compared the response of cells in the LGN with and without feedback from the visual cortex. Raster plots revealed a striking difference in the response pattern of cells with and without feedback. This difference was reflected in the results from computing vector sum plots and the ratio of zero harmonic to the fundamental harmonic of the fast Fourier transform (FFT) for these responses. The variability of responses assessed by using the Fano factor was also different for the two groups, with the cells without feedback showing higher variability. We examined the covariance of these measures between pairs of simultaneously recorded cells with and without feedback, and they were much more strongly positively correlated with feedback. We constructed orientation tuning curves from the central 5 ms in the raw cross-correlograms of the outputs of pairs of LGN cells, and these curves revealed much sharper tuning with feedback. We discuss the significance of these data for cortical function and suggest that the precision in stimulus-linked firing in the LGN appears as an emergent factor from the corticothalamic interaction.

Journal ArticleDOI
02 Aug 2007-Neuron
TL;DR: Compared responses to high- and low-contrast natural scene movie and white noise stimuli, it is shown that an increase in contrast or correlations results in receptive fields with faster temporal dynamics and stronger antagonistic surrounds, as well as decreases in gain and selectivity.

Journal ArticleDOI
TL;DR: This study illustrates how inhibitory interneurons can rapidly gate the flow of information within a circuit, dramatically altering the behavior of the principal neurons in the course of a computation.
Abstract: Retinal ganglion cells are commonly classified as On-center or Off-center depending on whether they are excited predominantly by brightening or dimming within the receptive field. Here we report that many ganglion cells in the salamander retina can switch from one response type to the other, depending on stimulus events far from the receptive field. Specifically, a shift of the peripheral image—as produced by a rapid eye movement—causes a brief transition in visual sensitivity from Off-type to On-type for approximately 100 ms. We show that these ganglion cells receive inputs from both On and Off bipolar cells, and the Off inputs are normally dominant. The peripheral shift strongly modulates the strength of these two inputs in opposite directions, facilitating the On pathway and suppressing the Off pathway. Furthermore, we identify certain wide-field amacrine cells that contribute to this modulation. Depolarizing such an amacrine cell affects nearby ganglion cells in the same way as the peripheral image shift, facilitating the On inputs and suppressing the Off inputs. This study illustrates how inhibitory interneurons can rapidly gate the flow of information within a circuit, dramatically altering the behavior of the principal neurons in the course of a computation.

Journal ArticleDOI
02 Aug 2007-Neuron
TL;DR: To ask if visually evoked synaptic responses induce each type of firing, intracellular responses to natural movies from relay cells are recorded and methods to map the receptive fields of the excitation and inhibition that the images evoked are developed.