scispace - formally typeset
Search or ask a question

Showing papers on "Transcranial direct-current stimulation published in 2015"


Journal ArticleDOI
TL;DR: A quantitative review of the cognitive data of transcranial direct current stimulation (tDCS) in healthy adults does not support the idea that tDCS generates a reliable effect on cognition inhealthy adults.

514 citations


Journal ArticleDOI
TL;DR: A systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed.

464 citations


Journal ArticleDOI
TL;DR: Results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits.

401 citations


Journal ArticleDOI
TL;DR: The importance of baseline neuronal state and features, anatomy, age and the inherent variability in the injured brain are discussed, as well as how interindividual variability affects the results of motor-evoked potential testing with transcranial magnetic stimulation, which can lead to apparent variability in response to tDCS in motor studies.
Abstract: There has been an explosion of research using transcranial direct current stimulation (tDCS) for investigating and modulating human cognitive and motor function in healthy populations. It has also been used in many studies seeking to improve deficits in disease populations. With the slew of studies reporting ‘promising results’ for everything from motor recovery after stroke to boosting memory function, one could be easily seduced by the idea of tDCS being the next panacea for all neurological ills. However, huge variability exists in the reported effects of tDCS, with great variability in the effect sizes and even contradictory results reported. In this review, we consider the interindividual factors that may contribute to this variability. In particular, we discuss the importance of baseline neuronal state and features, anatomy, age and the inherent variability in the injured brain. We additionally consider how interindividual variability affects the results of motor evoked potential (MEP) testing with transcranial magnetic stimulation (TMS), which, in turn, can lead to apparent variability in response to tDCS in motor studies.

357 citations


Journal ArticleDOI
TL;DR: The brain is put at the core of fundamental research, prevention and therapy in the context of obesity and eating disorders and non-invasive neuromodulation strategies to modulate food-related brain processes and functions are presented.

320 citations


Journal ArticleDOI
TL;DR: Induced sensations are modulated by electrode size and intensity and mainly pertain to the cutaneous receptor activity of the somatosensory system.

279 citations


Journal ArticleDOI
TL;DR: It is critical that a global or local effort is organized to pursue definite evidence to either approve and regulate or restrict the use of tDCS in clinical practice on the basis of adequate randomized controlled treatment trials.
Abstract: The field of transcranial electrical stimulation (tES) has experienced significant growth in the past 15 years. One of the tES techniques leading this increased interest is transcranial direct current stimulation (tDCS). Significant research efforts have been devoted to determining the clinical potential of tDCS in humans. Despite the promising results obtained with tDCS in basic and clinical neuroscience, further progress has been impeded by a lack of clarity on international regulatory pathways. We therefore convened a group of research and clinician experts on tDCS to review the research and clinical use of tDCS. In this report, we review the regulatory status of tDCS, and we summarize the results according to research, off-label and compassionate use of tDCS in the following countries: Australia, Brazil, France, Germany, India, Iran, Italy, Portugal, South Korea, Taiwan and United States. Research use, off label treatment and compassionate use of tDCS are employed in most of the countries reviewed in this study. It is critical that a global or local effort is organized to pursue definite evidence to either approve and regulate or restrict the use of tDCS in clinical practice on the basis of adequate randomized controlled treatment trials.

218 citations


Journal ArticleDOI
TL;DR: Significant inter-individual variability in response to tDCS across a range of current intensities was found, and 2 mA and 0.2 mA tDCS were most effective at inducing a distinct response.

217 citations


Journal ArticleDOI
18 Sep 2015-eLife
TL;DR: Although the previously reported findings that anodal tDCS reduces GABA concentration and increases functional connectivity in the stimulated motor cortex are confirmed, these changes are not correlated, suggesting they may be driven by distinct underlying mechanisms.
Abstract: We previously demonstrated that network level functional connectivity in the human brain could be related to levels of inhibition in a major network node at baseline (Stagg et al., 2014). In this study, we build upon this finding to directly investigate the effects of perturbing M1 GABA and resting state functional connectivity using transcranial direct current stimulation (tDCS), a neuromodulatory approach that has previously been demonstrated to modulate both metrics. FMRI data and GABA levels, as assessed by Magnetic Resonance Spectroscopy, were measured before and after 20 min of 1 mA anodal or sham tDCS. In line with previous studies, baseline GABA levels were negatively correlated with the strength of functional connectivity within the resting motor network. However, although we confirm the previously reported findings that anodal tDCS reduces GABA concentration and increases functional connectivity in the stimulated motor cortex; these changes are not correlated, suggesting they may be driven by distinct underlying mechanisms.

186 citations


Journal ArticleDOI
TL;DR: The findings suggest that non-invasive brain stimulation over the TC modulates the ANS activity and the sensory perception of effort and exercise performance, indicating that the brain plays a crucial role in the exercise performance regulation.
Abstract: Background The temporal and insular cortex (TC, IC) have been associated with autonomic nervous system (ANS) control and the awareness of emotional feelings from the body. Evidence shows that the ANS and rating of perceived exertion (RPE) regulate exercise performance. Non-invasive brain stimulation can modulate the cortical area directly beneath the electrode related to ANS and RPE, but it could also affect subcortical areas by connection within the corticocortical neural networks. This study evaluated the effects of transcranial direct current stimulation (tDCS) over the TC on the ANS, RPE and performance during a maximal dynamic exercise. Methods Ten trained cyclists participated in this study (33±9 years; 171.5±5.8 cm; 72.8±9.5 kg; 10–11 training years). After 20-min of receiving either anodal tDCS applied over the left TC (T3) or sham stimulation, subjects completed a maximal incremental cycling exercise test. RPE, heart rate (HR) and R–R intervals (as a measure of ANS function) were recorded continuously throughout the tests. Peak power output (PPO) was recorded at the end of the tests. Results With anodal tDCS, PPO improved by ∼4% (anodal tDCS: 313.2±29.9 vs 301.0±19.8 watts: sham tDCS; p=0.043), parasympathetic vagal withdrawal was delayed (anodal tDCS: 147.5±53.3 vs 125.0±35.4 watts: sham tDCS; p=0.041) and HR was reduced at submaximal workloads. RPE also increased more slowly during exercise following anodal tDCS application, but maximal RPE and HR values were not affected by cortical stimulation. Conclusions The findings suggest that non-invasive brain stimulation over the TC modulates the ANS activity and the sensory perception of effort and exercise performance, indicating that the brain plays a crucial role in the exercise performance regulation.

186 citations


Journal ArticleDOI
TL;DR: The cognitive demands of a task performed during tDCS can influence the effects of tDCS on post-stimulation performance, and this finding has direct relevance to the use of tDCs as an investigative tool in cognitive neuroscience and as a therapy.

Journal ArticleDOI
TL;DR: The data do not support the use of tDCS in treatment-resistant depression, or as an add-on augmentation treatment, and tDCS may be efficacious for treatment of MDE.

Journal ArticleDOI
TL;DR: It is suggested that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS, which will be key for developing more targeted interventions into oscillatory brain activity.
Abstract: A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS) and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity ("frequency-tuning"). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e. online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity.

Journal ArticleDOI
TL;DR: It is shown for the first time that intra- individual variability is lower than inter-individual variability, and with fair intra-individual inter-sessional reliability for 30 min after AtDCS-subjects are likely to maintain their response patterns to tDCS between sessions, with implications for experimental and therapeutic applications of tDCS.

Journal ArticleDOI
TL;DR: The physiological responses observed in vitro and in vivo are summarized, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation.
Abstract: Transcranial direct current stimulation is a noninvasive technique that has been experimentally tested for a number of psychiatric and neurological conditions. Preliminary observations suggest that this approach can indeed influence a number of cellular and molecular pathways that may be disease relevant. However, the mechanisms of action underlying its beneficial effects are largely unknown and need to be better understood to allow this therapy to be used optimally. In this review, we summarize the physiological responses observed in vitro and in vivo, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation, a topic that has been largely neglected in the literature. A better understanding of the neural responses to transcranial direct current stimulation is critical if this therapy is to be used in large-scale clinical trials with a view of being routinely offered to patients suffering from various conditions affecting the central nervous system.

Journal ArticleDOI
TL;DR: The positive effects of tDCS on cognitive performance suggest a potential efficacious treatment for cognitive deficits in partially recovered chronic schizophrenia outpatients that should be further investigated.

Journal ArticleDOI
TL;DR: These guidelines are intended to provide a minimal level of methodological rigor for clinical trials seeking to apply tDCS outside a specialized treatment center and support a standardized framework for evaluating the tolerability and reproducibility of remote-supervised tDCS.
Abstract: The effect of transcranial direct current stimulation (tDCS) is cumulative. Treatment protocols typically require multiple consecutive sessions spanning weeks or months. However, traveling to clinic for a tDCS session can present an obstacle to subjects and their caregivers. With modified devices and headgear, tDCS treatment can be administered remotely under clinical supervision, potentially enhancing recruitment, throughput, and convenience. Here we propose standards and protocols for clinical trials utilizing remotely-supervised tDCS with the goal of providing safe, reproducible and well-tolerated stimulation therapy outside of the clinic. The recommendations include: 1) training of staff in tDCS treatment and supervision, 2) assessment of the user’s capability to participate in tDCS remotely, 3) ongoing training procedures and materials including assessments of the user and/or caregiver, 4) simple and fail-safe electrode preparation techniques and tDCS headgear, 5) strict dose control for each session, 6) ongoing monitoring to quantify compliance (device preparation, electrode saturation/placement, stimulation protocol), with corresponding corrective steps as required, 7) monitoring for treatment-emergent adverse effects, 8) guidelines for discontinuation of a session and/or study participation including emergency failsafe procedures tailored to the treatment population’s level of need. These guidelines are intended to provide a minimal level of methodological rigor for clinical trials seeking to apply tDCS outside a specialized treatment center. We outline indication-specific applications (Attention Deficit Hyperactivity Disorder, Depression, Multiple Sclerosis, Palliative Care) following these recommendations that support a standardized framework for evaluating the tolerability and reproducibility of remote-supervised tDCS that, once established, will allow for translation of tDCS clinical trials to a greater size and range of patient populations.

Journal ArticleDOI
TL;DR: A systematic review with meta-analysis of randomized controlled trials to collate the available evidence in adults with residual motor impairments as a result of stroke found transcranial direct current stimulation is likely to be effective in enhancing motor performance in the short term when applied selectively to patients with stroke.
Abstract: Transcranial direct current stimulation has been gaining increasing interest as a potential therapeutic treatment in stroke recovery. We performed a systematic review with meta-analysis of randomized controlled trials to collate the available evidence in adults with residual motor impairments as a result of stroke. The primary outcome was change in motor function or impairment as a result of transcranial direct current stimulation, using any reported electrode montage, with or without adjunct physical therapy. The search yielded 15 relevant studies comprising 315 subjects. Compared with sham, cortical stimulation did not produce statistically significant improvements in motor performance when measured immediately after the intervention (anodal stimulation: facilitation of the affected cortex: standardized mean difference = 0.05, P = 0.71; cathodal stimulation: inhibition of the nonaffected cortex: standardized mean difference = 0.39, P = 0.08; bihemispheric stimulation: standardized mean difference = 0.24, P = 0.39). When the data were analyzed according to stroke characteristics, statistically significant improvements were evident for those with chronic stroke (standardized mean difference = 0.45, P = 0.01) and subjects with mild-to-moderate stroke impairments (standardized mean difference = 0.37, P = 0.02). Transcranial direct current stimulation is likely to be effective in enhancing motor performance in the short term when applied selectively to patients with stroke. Given the range of stimulation variables and heterogeneous nature of stroke, this modality is still experimental and further research is required to determine its clinical merit in stroke rehabilitation.

Journal ArticleDOI
TL;DR: Anodal transcranial direct current stimulation (anodal‐tDCS), with its potential to enhance neuroplasticity, may allow improving cognition in MCI.
Abstract: Introduction The long preclinical phase of Alzheimer's disease provides opportunities for potential disease-modifying interventions in prodromal stages such as mild cognitive impairment (MCI). Anodal transcranial direct current stimulation (anodal-tDCS), with its potential to enhance neuroplasticity, may allow improving cognition in MCI. Methods In a double-blind, cross-over, sham-controlled study, anodal-tDCS was administered to the left inferior frontal cortex during task-related and resting-state functional magnetic resonance imaging (fMRI) to assess its impact on cognition and brain functions in MCI. Results During sham stimulation, MCI patients produced fewer correct semantic-word-retrieval responses than matched healthy controls, which was associated with hyperactivity in bilateral prefrontal regions. Anodal-tDCS significantly improved performance to the level of controls, reduced task-related prefrontal hyperactivity and resulted in "normalization" of abnormal network configuration during resting-state fMRI. Discussion Anodal-tDCS exerts beneficial effects on cognition and brain functions in MCI, thereby providing a framework to test whether repeated stimulation sessions may yield sustained reversal of cognitive deficits.

Journal ArticleDOI
01 Aug 2015-Cortex
TL;DR: The data lend further support to the notion of state-dependency in NIBS which suggests outcome to depend on the endogenous balance between task-informative 'signal' and task-uninformative' 'noise' at baseline.

Journal ArticleDOI
TL;DR: Although many promising results regarding tDCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding tDCS efficacy in psychiatry.
Abstract: The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation (tDCS) has been the subject of great interest among researchers because of its easiness to use, low cost, benign profile of side effects and encouraging results of research in the field. This interest has generated several studies and randomized clinical trials, particularly in psychiatry. In this review, we provide a summary of the development of the technique and its mechanism of action as well as a review of the methodological aspects of randomized clinical trials in psychiatry, including studies in affective disorders, schizophrenia, obsessive compulsive disorder, child psychiatry and substance use disorder. Finally, we provide an overview of tDCS use in cognitive enhancement as well as a discussion regarding its clinical use and regulatory and ethical issues. Although many promising results regarding tDCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding tDCS efficacy in psychiatry.

Journal ArticleDOI
TL;DR: The results demonstrate that tDCS-induced plasticity is task-dependent, and the concurrent combination of A-tDCS with another excitability-increasing event, e.g., motor practice, may trigger non-additive mechanisms, hindering neuroplasticity.

Journal ArticleDOI
TL;DR: H-tDCS to the LDLPFC facilitates the rate of verbal learning and improved efficiency of working memory may underlie performance effects, and this focal method of administration tDCS has potential for probing and enhancing cognitive functioning.

Journal ArticleDOI
TL;DR: This is the first demonstration that this procedure can improve memory in Older adults, suggesting that declarative memory performance in older adults is partly dependent on slow-wave activity during sleep.

Journal ArticleDOI
TL;DR: It is demonstrated that tDCS may not enhance SLT outcomes and the proportion of dropouts was comparable between groups, and there is no evidence of the effectiveness of tDCS versus control for improving functional communication, language impairment and cognition in people with aphasia after stroke.
Abstract: Background Stroke is one of the leading causes of disability worldwide and aphasia among survivors is common. Current speech and language therapy (SLT) strategies have only limited effectiveness in improving aphasia. A possible adjunct to SLT for improving SLT outcomes might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability and hence to improve aphasia. Objectives To assess the effects of tDCS for improving aphasia in people who have had a stroke. Search methods We searched the Cochrane Stroke Group Trials Register (June 2018), CENTRAL (Cochrane Library, June 2018), MEDLINE (1948 to June 2018), Embase (1980 to June 2018), CINAHL (1982 to June 2018), AMED (1985 to June 2018), Science Citation Index (1899 to June 2018), and seven additional databases. We also searched trial registers and reference lists, handsearched conference proceedings and contacted authors and equipment manufacturers. Selection criteria We included only randomised controlled trials (RCTs) and randomised controlled cross-over trials (from which we only analysed the first period as a parallel group design) comparing tDCS versus control in adults with aphasia due to stroke. Data collection and analysis Two review authors independently assessed trial quality and risk of bias, and extracted data. If necessary, we contacted study authors for additional information. We collected information on dropouts and adverse events from the trials. Main results We included 21 trials involving 421 participants in the qualitative synthesis. Three studies with 112 participants used formal outcome measures for our primary outcome measure of functional communication - that is, measuring aphasia in a real-life communicative setting. There was no evidence of an effect (standardised mean difference (SMD) 0.17, 95% confidence interval (CI) -0.20 to 0.55; P = 0.37; I² = 0%; low quality of evidence; inverse variance method with random-effects model; higher SMD reflecting benefit from tDCS; moderate quality of evidence). At follow-up, there also was no evidence of an effect (SMD 0.14, 95% CI -0.31 to 0.58; P = 0.55; 80 participants ; 2 studies; I² = 0%; very low quality of evidence; higher SMD reflecting benefit from tDCS; moderate quality of evidence).For our secondary outcome measure, accuracy in naming nouns at the end of intervention, there was evidence of an effect (SMD 0.42, 95% CI 0.19 to 0.66; P = 0.0005; I² = 0%; 298 participants; 11 studies; inverse variance method with random-effects model; higher SMD reflecting benefit from tDCS; moderate quality of evidence). There was an effect for the accuracy in naming nouns at follow-up (SMD 0.87, 95% CI 0.25 to 1.48; P = 0.006; 80 participants; 2 studies; I² = 32%; low quality of evidence); however the results were not statistically significant in our sensitivity analysis regarding the assumptions of the underlying correlation coefficient for imputing missing standard deviations of change scores. There was no evidence of an effect regarding accuracy in naming verbs post intervention (SMD 0.19, 95% CI -0.68 to 1.06; P = 0.67; I² = 0%; 21 participants; 3 studies; very low quality of evidence). We found no studies examining the effect of tDCS on cognition in people with aphasia after stroke. We did not find reported serious adverse events and the proportion of dropouts and adverse events was comparable between groups (odds ratio (OR) 0.54, 95% CI 0.21 to 1.37; P = 0.19; I² = 0%; Mantel-Haenszel method with random-effects model; 345 participants; 15 studies; low quality of evidence). Authors' conclusions Currently there is no evidence of the effectiveness of tDCS (anodal tDCS, cathodal tDCS and Dual-tDCS) versus control (sham tDCS) for improving functional communication in people with aphasia after stroke (low quality of evidence). However, there is limited evidence that tDCS may improve naming performance in naming nouns (moderate quality of evidence), but not verbs (very low quality of evidence) at the end of the intervention period and possibly also at follow-up. Further methodologically rigorous RCTs with adequate sample size calculation are needed in this area to determine the effectiveness of this intervention. Data on functional communication and on adverse events should routinely be collected and presented in further publications as well as data at follow-up. Further study on the relationship between language/aphasia and cognition may be required, and improved cognitive assessments for patients with aphasia developed, prior to the use of tDCS to directly target cognition in aphasia. Authors should state total values at post-intervention as well as their corresponding change scores with standard deviations.

Journal ArticleDOI
TL;DR: A new generation of functional near infrared spectroscopy systems is described that are miniaturized, portable, and include wearable sensors that provide an opportunity to couple fNIRS with tDCS, consistent with a neuroergonomics approach for joint neuroimaging and neurostimulation investigations of cognition in complex tasks and in naturalistic conditions.
Abstract: Contemporary studies with transcranial direct current stimulation (tDCS) provide a growing base of evidence for enhancing cognition through the non-invasive delivery of weak electric currents to the brain. The main effect of tDCS is to modulate cortical excitability depending on the polarity of the applied current. However, the underlying mechanism of neuromodulation is not well understood. A new generation of functional near infrared spectroscopy (fNIRS) systems is described that are miniaturized, portable, and include wearable sensors. These developments provide an opportunity to couple fNIRS with tDCS, consistent with a neuroergonomics approach for joint neuroimaging and neurostimulation investigations of cognition in complex tasks and in naturalistic conditions. The effects of tDCS on complex task performance and the use of fNIRS for monitoring cognitive workload during task performance are described. Also explained is how fNIRS + tDCS can be used simultaneously for assessing spatial working memory. Mobile optical brain imaging is a promising neuroimaging tool that has the potential to complement tDCS for realistic applications in natural settings.

Journal ArticleDOI
01 Sep 2015-Pain
TL;DR: In this article, a workshop was held to solicit advice from experts in transcranial magnetic stimulation (TMS), pain research, and clinical trials, and the authors recommended that researchers standardize and document all TMS parameters and improve strategies for sham and double blinding.
Abstract: Recognizing that electrically stimulating the motor cortex could relieve chronic pain sparked development of noninvasive technologies. In transcranial magnetic stimulation (TMS), electromagnetic coils held against the scalp influence underlying cortical firing. Multiday repetitive transcranial magnetic stimulation (rTMS) can induce long-lasting, potentially therapeutic brain plasticity. Nearby ferromagnetic or electronic implants are contraindications. Adverse effects are minimal, primarily headaches. Single provoked seizures are very rare. Transcranial magnetic stimulation devices are marketed for depression and migraine in the United States and for various indications elsewhere. Although multiple studies report that high-frequency rTMS of the motor cortex reduces neuropathic pain, their quality has been insufficient to support Food and Drug Administration application. Harvard's Radcliffe Institute therefore sponsored a workshop to solicit advice from experts in TMS, pain research, and clinical trials. They recommended that researchers standardize and document all TMS parameters and improve strategies for sham and double blinding. Subjects should have common well-characterized pain conditions amenable to motor cortex rTMS and studies should be adequately powered. They recommended standardized assessment tools (eg, NIH's PROMIS) plus validated condition-specific instruments and consensus-recommended metrics (eg, IMMPACT). Outcomes should include pain intensity and qualities, patient and clinician impression of change, and proportions achieving 30% and 50% pain relief. Secondary outcomes could include function, mood, sleep, and/or quality of life. Minimum required elements include sample sources, sizes, and demographics, recruitment methods, inclusion and exclusion criteria, baseline and posttreatment means and SD, adverse effects, safety concerns, discontinuations, and medication-usage records. Outcomes should be monitored for at least 3 months after initiation with prespecified statistical analyses. Multigroup collaborations or registry studies may be needed for pivotal trials.

Journal ArticleDOI
TL;DR: This technique allows us to study neuroplasticity of the human brain in a reversible manner and to modulate plasticity-related functions such as memory or learning, which critically depend on neuroplasticsity, in healthy and clinical populations.
Abstract: Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation technique that has been reintroduced in the last decade and is now mainly used as a cognitive modulator in human neuroscience research. tDCS delivers a weak direct current (usually up to 2 mA) over the scalp and creates a constant electric field in the brain which can lead to acute alterations of the excitability of cortical areas by its subthreshold depolarizing or hyperpolarizing effects on neuronal resting membrane potentials (Nitsche and Paulus, 2000). Beyond these acute effects, stimulation for some minutes results in neuroplastic after-effects, which can last for over 1 h after stimulation (Nitsche and Paulus, 2001). With repeated usage, longer lasting effects can be induced, which are in the range of late-phase plasticity (Monte-Silva et al., 2013). The neuroplastic effects resemble LTP- and LTD-like plasticity of glutamatergic synapses (Liebetanz et al., 2002; Nitsche et al., 2003a). Therefore, this technique allows us to study neuroplasticity of the human brain in a reversible manner and to modulate plasticity-related functions such as memory or learning, which critically depend on neuroplasticity, in healthy and clinical populations. Traditionally, one or more surface-positive (anode) and negative (cathode) electrodes are used to deliver current; one is positioned over the target area and the other one is put over another cranial (intracephalic) or extracranial (extracephalic) region of the body. These electrodes are usually called active and reference electrode respectively. However, these terms can be technically improper and should be replaced with other terms such as “target” and “return” electrodes, because the size and the place of a return electrode have an impact on its effects and thus it might not be physiologically inert. The return electrode can contribute directly—and not only via determination of electrical field orientation—to physiological effects when put over the cranium as well (Brunoni et al., 2012). Several studies have also shown antagonistic effects of stimulation on visual cortex (Antal et al., 2004; Accornero et al., 2007) and motor cortex (Nitsche and Paulus, 2000) dependent on return electrode position. In any case, the position of the return electrode will affect electrical field orientation, which is critical for the efficacy, and direction of the effects (Bikson et al., 2010; Kabakov et al., 2012). In both—extracephalic and intracephalic conditions—positive (cathode) and negative (anode) poles are conventionally physiologically distinguished according to their effects on excitability of the brain. Basically, cathodal stimulation has hyperpolarizing effects, which lead to inhibition of cortical activity, while anodal stimulation has excitatory effects (Nitsche et al., 2003b, 2008). It should be worth noting that although every neuron undergoes hyperpolarizing and depolarizing, the physiological effect depends more on axonal/soma polarization (Arlotti et al., 2012), hence the physical and physiological aspects can be dissociated. General effects on excitability, which were obtained primarily in the human motor cortex, might also switch, turning from excitatory to inhibitory or vice versa, dependent on stimulation parameters such as intensity, and duration (Batsikadze et al., 2013; Monte-Silva et al., 2013), and position of the return electrode (Antal et al., 2004; Accornero et al., 2007). With a rise in prevalence of studies using tDCS, protocols have become more complex and varieties of tDCS montages were introduced and are used in different labs. Despite this extending diversity of tDCS electrode montages, to our best knowledge, there is no consensus among researchers in this field on a systematic framework for categorizing electrode montages in a unified way. In this short article, we propose a framework for categorization of tDCS montages according to physical characteristics. This categorization is based on published studies until October 2014. Our main motivation to propose this framework is to unify the classifications of electrode montages in a simple way; there are nevertheless several other advantages of this categorization. First, different montages that are used to target a specific brain area such as dorsolateral prefrontal cortex (DLPFC) could have different effects; therefore providing a unified classification enables us to take these differences into account. Furthermore, this classification gives us a chance to explore other novel potentials for electrode montages that so far have remained untouched. Lastly, a unified systematic framework will be helpful for presenting study methods and for extracting data for systematic reviews and meta-analyses in a more practical way.

Journal ArticleDOI
TL;DR: Both the development of offline skill loss in sham-stimulated subjects and offline skill gains induced by anodal tDCS critically depend on the passage of time after training, but not on overnight sleep, supporting the view that tDCS interacts directly with the physiological consolidation process.
Abstract: Consolidation of motor skills after training can occur in a time- or sleep-dependent fashion. Recent studies revealed time-dependent consolidation as a common feature of visuomotor tasks. We have previously shown that anodal transcranial direct current stimulation (tDCS) in combination with repeated motor training benefits consolidation by the induction of offline skill gains in a complex visuomotor task, preventing the regular occurrence of skill loss between days. Here, we asked 2 questions: What is the time course of consolidation between days for this task and do exogenously induced offline gains develop as a function of time or overnight sleep? We found that both the development of offline skill loss in sham-stimulated subjects and offline skill gains induced by anodal tDCS critically depend on the passage of time after training, but not on overnight sleep. These findings support the view that tDCS interacts directly with the physiological consolidation process. However, in a control experiment, anodal tDCS applied after the training did not induce skill gains, implying that coapplication of tDCS and training is required to induce offline skill gains, pointing to the initiation of consolidation already during training.

Journal ArticleDOI
TL;DR: How non-invasive brain stimulation techniques influence widespread neural integration across brain regions is discussed and the efficacy of such techniques in the treatment of psychiatric and neurological conditions is suggested to be contingent on applying the appropriate stimulation paradigm to restore specific aspects of altered neural integration.