scispace - formally typeset
Search or ask a question

Showing papers by "Anders Meibom published in 2017"


Journal ArticleDOI
TL;DR: HOC sorption to and desorption from MPs and the underlying principles for their interactions are explored and intrinsic and extrinsic parameters influencing these processes are discussed and focus on the importance of the exposure route for diffusive mass transfer.
Abstract: The occurrence and effects of microplastics (MPs) in the aquatic environment are receiving increasing attention. In addition to their possible direct adverse effects on biota, the potential role of MPs as vectors for hydrophobic organic chemicals (HOCs), compared to natural pathways, is a topic of much debate. It is evident, however, that temporal and spatial variations of MP occurrence do (and will) occur. To further improve the estimations of the role of MPs as vectors for HOC transfer into biota under varying MP concentrations and environmental conditions, it is important to identify and understand the governing processes. Here, we explore HOC sorption to and desorption from MPs and the underlying principles for their interactions. We discuss intrinsic and extrinsic parameters influencing these processes and focus on the importance of the exposure route for diffusive mass transfer. Also, we outline research needed to fill knowledge gaps and improve model-based calculations of MP-facilitated HOC transfer in the environment. Integr Environ Assess Manag 2017;13:488–493. © 2017 SETAC

410 citations


Journal ArticleDOI
TL;DR: Now living well below their thermal threshold in the Gulf of Aqaba, these corals have been evolutionarily selected for heat tolerance during their migration through the warm Southern Red Sea after the last ice age, which may allow them to withstand future warming for a longer period of time, provided that successful environmental conservation measures are enacted across national boundaries in the region.
Abstract: Coral reefs are currently experiencing substantial ecological impoverishment as a result of anthropogenic stressors, and the majority of reefs are facing immediate risk Increasing ocean surface temperatures induce frequent coral mass bleaching events—the breakdown of the nutritional photo-symbiosis with intracellular algae (genus: Symbiodinium) Here, we report that Stylophora pistillata from a highly diverse reef in the Gulf of Aqaba showed no signs of bleaching despite spending 15 months at 1–2°C above their long-term summer maximum (amounting to 11 degree heating weeks) and a seawater pH of 78 Instead, their symbiotic dinoflagellates exhibited improved photochemistry, higher pigmentation and a doubling in net oxygen production, leading to a 51% increase in primary productivity Nanoscale secondary ion mass spectrometry imaging revealed subtle cellular-level shifts in carbon and nitrogen metabolism under elevated temperatures, but overall host and symbiont biomass proxies were not significantly affected Now living well below their thermal threshold in the Gulf of Aqaba, these corals have been evolutionarily selected for heat tolerance during their migration through the warm Southern Red Sea after the last ice age This may allow them to withstand future warming for a longer period of time, provided that successful environmental conservation measures are enacted across national boundaries in the region

106 citations


Journal ArticleDOI
25 Apr 2017-ACS Nano
TL;DR: The findings suggest that the vesicle inner morphology might regulate the neurotransmitter release event during open and closed exocytosis from dense core vesicles with hours of equilibrium needed to move significant amounts of catecholamine from the protein dense core despite its nanometer size.
Abstract: We report an approach to spatially resolve the content across nanometer neuroendocrine vesicles in nerve-like cells by correlating super high-resolution mass spectrometry imaging, NanoSIMS, with transmission electron microscopy (TEM). Furthermore, intracellular electrochemical cytometry at nanotip electrodes is used to count the number of molecules in individual vesicles to compare to imaged amounts in vesicles. Correlation between the NanoSIMS and TEM provides nanometer resolution of the inner structure of these organelles. Moreover, correlation with electrochemical methods provides a means to quantify and relate vesicle neurotransmitter content and release, which is used to explain the slow transfer of dopamine between vesicular compartments. These nanoanalytical tools reveal that dopamine loading/unloading between vesicular compartments, dense core and halo solution, is a kinetically limited process. The combination of NanoSIMS and TEM has been used to show the distribution profile of newly synthesized dopamine across individual vesicles. Our findings suggest that the vesicle inner morphology might regulate the neurotransmitter release event during open and closed exocytosis from dense core vesicles with hours of equilibrium needed to move significant amounts of catecholamine from the protein dense core despite its nanometer size.

81 citations


Journal ArticleDOI
TL;DR: The technological features of the mass spectrometry imaging methods used are covered and an overview of the applications in metal-based anticancer drug research as well as some future perspectives are given.
Abstract: Mass spectrometry imaging is being increasingly used in metal-based anticancer drug development to study elemental and/or molecular drug distributions in different biological systems. The main analytical tools employed are SIMS (especially nanoSIMS), LA-ICP-MSI and MALDI-MSI as well as a combination of complementary imaging techniques. Main challenges are appropriate sample preparation methods, reliable and validated quantification strategies and a trade-off between sensitivity and spatial resolution. So far, research has mostly focused on the development of analytical methods for imaging with the long term goal to study drug uptake into tumor tissue and toxicity affected organs and to identify cellular targets of metal-based drugs. In this review we cover the technological features of the mass spectrometry imaging methods used and give an overview of the applications in metal-based anticancer drug research as well as some future perspectives.

51 citations


Journal ArticleDOI
31 May 2017-PLOS ONE
TL;DR: The results show that anoxia induced a greatly reduced rate of heterotrophic metabolism in Ammonia tepida on a time scale of less than 24 hours, which is consistent with a state of dormancy.
Abstract: High input of organic carbon and/or slowly renewing bottom waters frequently create periods with low dissolved oxygen concentrations on continental shelves and in coastal areas; such events can have strong impacts on benthic ecosystems. Among the meiofauna living in these environments, benthic foraminifera are often the most tolerant to low oxygen levels. Indeed, some species are able to survive complete anoxia for weeks to months. One known mechanism for this, observed in several species, is denitrification. For other species, a state of highly reduced metabolism, essentially a state of dormancy, has been proposed but never demonstrated. Here, we combined a 4 weeks feeding experiment, using 13C-enriched diatom biofilm, with correlated TEM and NanoSIMS imaging, plus bulk analysis of concentration and stable carbon isotopic composition of total organic matter and individual fatty acids, to study metabolic differences in the intertidal species Ammonia tepida exposed to oxic and anoxic conditions. Strongly contrasting cellular-level dynamics of ingestion and transfer of the ingested biofilm components were observed between the two conditions. Under oxic conditions, within a few days, intact diatoms were ingested, degraded, and their components assimilated, in part for biosynthesis of different cellular components: 13C-labeled lipid droplets formed after a few days and were subsequently lost (partially) through respiration. In contrast, in anoxia, fewer diatoms were initially ingested and these were not assimilated or metabolized further, but remained visible within the foraminiferal cytoplasm even after 4 weeks. Under oxic conditions, compound specific 13C analyses showed substantial de novo synthesis by the foraminifera of specific polyunsaturated fatty acids (PUFAs), such as 20:4(n-6). Very limited PUFA synthesis was observed under anoxia. Together, our results show that anoxia induced a greatly reduced rate of heterotrophic metabolism in Ammonia tepida on a time scale of less than 24 hours, these observations are consistent with a state of dormancy.

47 citations


Journal ArticleDOI
TL;DR: It is shown that isotope re-equilibration can occur during sediment burial without structural modification of the tests and cause a substantial overestimation of ocean paleotemperatures.
Abstract: Oxygen-isotope compositions of fossilised planktonic and benthic foraminifera tests are used as proxies for surface- and deep-ocean paleotemperatures, providing a continuous benthic record for the past 115 Ma. However, visually imperceptible processes can alter these proxies during sediment burial. Here, we investigate the diffusion-controlled re-equilibration process with experiments exposing foraminifera tests to elevated pressures and temperatures in isotopically heavy artificial seawater (H2 18O), followed by scanning electron microscopy and quantitative NanoSIMS imaging: oxygen-isotope compositions changed heterogeneously at submicrometer length scales without any observable modifications of the test ultrastructures. In parallel, numerical modelling of diffusion during burial shows that oxygen-isotope re-equilibration of fossil foraminifera tests can cause significant overestimations of ocean paleotemperatures on a time scale of 107 years under natural conditions. Our results suggest that the late Cretaceous and Paleogene deep-ocean and high-latitude surface-ocean temperatures were significantly lower than is generally accepted, thereby explaining the paradox of the low equator-to-pole surface-ocean thermal gradient inferred for these periods. The oxygen-isotope composition of fossil foraminifera tests is an established proxy for ocean paleotemperatures. Here, the authors show that isotope re-equilibration can occur during sediment burial without structural modification of the tests and cause a substantial overestimation of ocean paleotemperatures.

42 citations


Journal ArticleDOI
TL;DR: A combination of transmission electron microscopy (TEM) and nanoscale-secondary ion mass spectrometry (NanoSIMS) is used to reveal differences between cisplatin uptake in human ovarian cancers cells, which are known to be susceptible to acquired resistance to cisPlatin.
Abstract: Cisplatin is a widely used anti-cancer drug, but its effect is often limited by acquired resistance to the compound during treatment. Here, we use a combination of transmission electron microscopy (TEM) and nanoscale-secondary ion mass spectrometry (NanoSIMS) to reveal differences between cisplatin uptake in human ovarian cancers cells, which are known to be susceptible to acquired resistance to cisplatin. Both cisplatin sensitive and resistant cell lines were studied, revealing markedly less cisplatin in the resistant cell line. In cisplatin sensitive cells, Pt was seen to distribute diffusely in the cells with hotspots in the nucleolus, mitochondria, and autophagosomes. Inductively coupled plasma mass spectrometry (ICP-MS) was used to validate the NanoSIMS results.

35 citations


Journal ArticleDOI
TL;DR: Nanoscale secondary ion mass spectrometry (NanoSIMS) combined with transmission electron microscopy (TEM) can be a powerful approach to visualize the exact distribution of drugs at the sub-cellular level and RAPTA-T shows a lack of membrane accumulation on the non-invasive MCF-7 cells, which correlates well with its selective anti-metastatic properties on invasive cell lines.
Abstract: Nanoscale secondary ion mass spectrometry (NanoSIMS) combined with transmission electron microscopy (TEM) can be a powerful approach to visualize the exact distribution of drugs at the sub-cellular level. In this work, we exploit this approach to identify the distribution and localisation of the organometallic ruthenium(II)-arene drug Ru(η⁶-C₆H₅Me)(pta)Cl₂, termed RAPTA-T, in MDA-MB-231 and MCF-7 human breast cancer cells. These cell lines have been chosen because the former cell lines are highly invasive and resistant to most chemotherapeutic agents and the latter ones are very sensitive to hormonal-based therapies. In the MDA-MB-231 cells, RAPTA-T was found to predominantly localise on the cell membrane and to a lesser extent in the nucleolus. These findings are consistent with the previously reported anti-metastatic properties of RAPTA-T and the observation that once internalized RAPTA-T is associated with chromatin. RAPTA-T shows a lack of membrane accumulation on the non-invasive MCF-7 cells, which correlates well with its selective anti-metastatic properties on invasive cell lines.

23 citations


Journal ArticleDOI
01 Dec 2017-Geology
TL;DR: In this paper, the authors analyzed P in olivine and MIs from two mid-oceanic ridge basalt samples from the Mid-Atlantic Ridge (MAR) by electron microanalyzer, secondary ion mass spectrometry (SIMS), and nanoSIMS.
Abstract: Melt inclusions (MIs) hosted in euhedral olivine have been pro - posed to represent droplets of primary melt, protected from processes occurring near Earth’s surface during eruption. The complex zoning of phosphorus (P) in some olivines and the presence of a P-depleted zone around MIs indicate a complex history for the host-MI system. We analyzed P in olivine and MIs from two mid-oceanic ridge basalt (MORB) samples from the Mid-Atlantic Ridge (MAR) by electron probe microanalyzer, secondary ion mass spectrometry (SIMS), and NanoSIMS. Phosphorus dendrites in olivine suggest an initial fast olivine growth followed by a stage of slower growth. Dissolution tex- tures around some MIs were identified and were probably caused by adiabatic decompression melting. Based on diffusion modeling of P in olivine, we infer that olivine beneath the MAR remains in the system (1) for days to weeks after crystallization of P-rich lamellae, and (2) for a few hours after recrystallization of dissolved olivine. Dissolution and reprecipitation of olivine containing boundary layers suggests that most MIs might be affected by late post-entrapment processes.

22 citations


Journal ArticleDOI
01 Apr 2017-Geology
TL;DR: In this article, it was shown that micrabaciids, a scleractinian coral clade that first appeared in the fossil record of the Cretaceous, when the ocean Mg/Ca ratio was near the lowest in the Phanerozoic, formed skeletons composed exclusively of aragonite.
Abstract: Changes in seawater chemistry have affected the evolution of calcifying marine organisms, including their skeletal polymorph (calcite versus aragonite), which is believed to have been strongly influenced by the Mg/Ca ratio at the time these animals first emerged. However, we show that micrabaciids, a scleractinian coral clade that first appeared in the fossil record of the Cretaceous, when the ocean Mg/Ca ratio was near the lowest in the Phanerozoic (thus a priori favoring calcitic mineralogy), formed skeletons composed exclusively of aragonite. Exceptionally preserved aragonitic coralla of Micrabacia from the Late Cretaceous Ripley Formation (southeastern USA) have skeletal microstructures identical to their modern representatives. In addition, skeletons of Micrabacia from Cretaceous chalk deposits of eastern Poland are clearly diagenetically altered in a manner consistent with originally aragonitic mineralogy. These deposits have also preserved fossils of the scleractinian Coelosmilia, the skeleton of which is interpreted as originally calcitic. These findings show that if changes in seawater Mg/Ca ratio influenced the mineralogy of scleractinian corals, the outcome was taxon specific. The aragonitic mineralogy, unique skeletal microstructures and ultrastructures, and low Mg/Ca ratios in both fossil and living micrabaciids indicate that their biomineralization process is strongly controlled and has withstood major fluctuations in seawater chemistry during the past 70 m.y.

16 citations