scispace - formally typeset
Search or ask a question

Showing papers by "Donald E. Low published in 2014"


Journal ArticleDOI
TL;DR: Analysis of 3,615 genome sequences permitted us to delineate the nature and timing of molecular events that contributed to an ongoing global human epidemic of infections caused by group A Streptococcus, the “flesh-eating” pathogen, and resolve a decades-long controversy about the type and sequence of genomic alterations that produced this explosive epidemic.
Abstract: We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD+-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide.

237 citations


Journal ArticleDOI
TL;DR: The findings underline the importance of recombination in GBS pathogenesis and caution against the use of single-gene-based PCR tests to detect CC17 GBS strains.
Abstract: We determined the capsular polysaccharide (CPS) type of 600 group B Streptococcus (GBS) (also known as Streptococcus agalactiae) strains recovered from patients with invasive infections in the greater Toronto area, Canada, between 2009 and 2012. GBS strains of CPS type III were the most prevalent among infants (44% in those with early-onset disease, 75% in those with late-onset disease), while type V strains were most frequently isolated from adult patients (26% in patients ≥19 years old). We next investigated the presence in our collection of GBS strains belonging to the hypervirulent multilocus sequence typing clonal complex 17 (CC17). We used a PCR test described as specific for the detection of CC17 strains, which targets the gene encoding the major virulence factor HvgA. We identified 91 hvgA-positive strains; of these, 88 were CPS type III, 2 were CPS type IV, and 1 was CPS type V. Using whole-genome sequencing, we showed that the two hvgA-positive CPS type IV strains are CC17 strains which underwent capsular switching. However, sequence analysis revealed that the hvgA-positive CPS type V strain does not belong to CC17 but instead is a bona fide CC1 strain which acquired hvgA, probably by recombination from a CC17 donor. Our findings underline the importance of recombination in GBS pathogenesis and caution against the use of single-gene-based PCR tests to detect CC17 GBS strains.

75 citations


Journal ArticleDOI
TL;DR: Time elapsed since last exposure to a class of antibiotics is the most important factor predicting antimicrobial resistance in pneumococci, and the duration of effect is longer for macrolides than other classes.
Abstract: Background Estimating the risk of antibiotic resistance is important in selecting empiric antibiotics. We asked how the timing, number of courses, and duration of antibiotic therapy in the previous 3 months affected antibiotic resistance in isolates causing invasive pneumococcal disease (IPD). Methods We conducted prospective surveillance for IPD in Toronto, Canada, from 2002 to 2011. Antimicrobial susceptibility was measured by broth microdilution. Clinical information, including prior antibiotic use, was collected by chart review and interview with patients and prescribers. Results Clinical information and antimicrobial susceptibility were available for 4062 (90%) episodes; 1193 (29%) of episodes were associated with receipt of 1782 antibiotic courses in the prior 3 months. Selection for antibiotic resistance was class specific. Time elapsed since most recent antibiotic was inversely associated with resistance (cephalosporins: adjusted odds ratio [OR] per day, 0.98; 95% confidence interval [CI], .96-1.00; P = .02; macrolides: OR, 0.98; 95% CI, .96-.99; P = .005; penicillins: OR [log(days)], 0.62; 95% CI, .44-.89; P = .009; fluoroquinolones: profile penalized-likelihood OR [log(days)], 0.62; 95% CI, .39-1.04; P = .07). Risk of resistance after exposure declined most rapidly for fluoroquinolones and penicillins and reached baseline in 2-3 months. The decline in resistance was slowest for macrolides, and in particular for azithromycin. There was no significant association between duration of therapy and resistance for any antibiotic class. Too few patients received multiple courses of the same antibiotic class to assess the significance of repeat courses. Conclusions Time elapsed since last exposure to a class of antibiotics is the most important factor predicting antimicrobial resistance in pneumococci. The duration of effect is longer for macrolides than other classes.

56 citations


Journal ArticleDOI
TL;DR: Whether this new strain of E. faecium containing vanA yet susceptible to vancomycin represents VRE has yet to be determined; however, unique testing procedures are required for reliable identification.
Abstract: Accurate detection of vancomycin-resistant enterococci (VRE) is essential in preventing transmission in health care settings. Chromogenic media are widely used for screening VRE because of fast turnaround times (TAT) and high sensitivity. We report an outbreak of Enterococcus faecium bearing vanA yet susceptible to vancomycin (vancomycin-variable Enterococcus [VVE]). Between October 2009 to March 2011, clinical and screening specimens (n = 14,747) were screened for VRE using VRE-selective medium and/or PCR. VVE isolates were genotyped to determine relatedness. Plasmids from these isolates were characterized by sequencing. Overall, 52 VVE isolates were identified, comprising 15% of all VRE isolates identified. Isolates demonstrated growth on Brilliance VRE agar (Oxoid) at 24 h of incubation but did not grow on brain heart infusion agar with 6 μg/ml vancomycin (Oxoid) or bile esculin azide agar with 6 μg/ml vancomycin (Oxoid) and were susceptible to vancomycin. Genotyping of 20 randomly selected VVE isolates revealed that 15/20 were identical, while 5 were highly related. PCR of the VVE transposon confirmed the presence of vanHAXY gene cluster; however, vanS (sensor) and vanR (regulator) genes were absent. The outbreak was controlled through routine infection control measures. We report an emergence of a fit strain of E. faecium containing vanA yet susceptible to vancomycin. Whether this new strain represents VRE has yet to be determined; however, unique testing procedures are required for reliable identification of VVE.

50 citations


Journal ArticleDOI
TL;DR: Non-Ec-Sp isolates from the classic lineage have evolved separately, have spread globally, are well adapted to nasopharyngeal carriage and are able to coexist with Ec-Sp.
Abstract: The surrounding capsule of Streptococcus pneumoniae has been identified as a major virulence factor and is targeted by pneumococcal conjugate vaccines (PCV). However, nonencapsulated S. pneumoniae (non-Ec-Sp) have also been isolated globally, mainly in carriage studies. It is unknown if non-Ec-Sp evolve sporadically, if they have high antibiotic nonsusceptiblity rates and a unique, specific gene content. Here, whole-genome sequencing of 131 non-Ec-Sp isolates sourced from 17 different locations around the world was performed. Results revealed a deep-branching classic lineage that is distinct from multiple sporadic lineages. The sporadic lineages clustered with a previously sequenced, global collection of encapsulated S. pneumoniae (Ec-Sp) isolates while the classic lineage is comprised mainly of the frequently identified multilocus sequences types (STs) ST344 (n = 39) and ST448 (n = 40). All ST344 and nine ST448 isolates had high nonsusceptiblity rates to β-lactams and other antimicrobials. Analysis of the accessory genome reveals that the classic non-Ec-Sp contained an increased number of mobile elements, than Ec-Sp and sporadic non-Ec-Sp. Performing adherence assays to human epithelial cells for selected classic and sporadic non-Ec-Sp revealed that the presence of a integrative conjugative element (ICE) results in increased adherence to human epithelial cells (P = 0.005). In contrast, sporadic non-Ec-Sp lacking the ICE had greater growth in vitro possibly resulting in improved fitness. In conclusion, non-Ec-Sp isolates from the classic lineage have evolved separately. They have spread globally, are well adapted to nasopharyngeal carriage and are able to coexist with Ec-Sp. Due to continued use of PCV, non-Ec-Sp may become more prevalent.

42 citations


Journal ArticleDOI
TL;DR: Overall, this study shows that L. pneumophila is capable of autoaggregating in a process that is mediated by Lcl in a divalent-cation-dependent manner, and reveals that Lcl potentiates the ability of L.neumophila to come in contact, attach, and infect amoebae.
Abstract: Although only partially understood, multicellular behavior is relatively common in bacterial pathogens. Bacterial aggregates can resist various host defenses and colonize their environment more efficiently than planktonic cells. For the waterborne pathogen Legionella pneumophila, little is known about the roles of autoaggregation or the parameters which allow cell-cell interactions to occur. Here, we determined the endogenous and exogenous factors sufficient to allow autoaggregation to take place in L. pneumophila. We show that isolates from Legionella species which do not produce the Legionella collagen-like protein (Lcl) are deficient in autoaggregation. Targeted deletion of the Lcl-encoding gene (lpg2644) and the addition of Lcl ligands impair the autoaggregation of L. pneumophila. In addition, Lcl-induced autoaggregation requires divalent cations. Escherichia coli producing surface-exposed Lcl is able to autoaggregate and shows increased biofilm production. We also demonstrate that L. pneumophila infection of Acanthamoeba castellanii and Hartmanella vermiformis is potentiated under conditions which promote Lcl dependent autoaggregation. Overall, this study shows that L. pneumophila is capable of autoaggregating in a process that is mediated by Lcl in a divalent-cation-dependent manner. It also reveals that Lcl potentiates the ability of L. pneumophila to come in contact, attach, and infect amoebae.

34 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the survival of a pandemic strain of influenza A H1N1 on a variety of common household surfaces where multiple samples were taken from four types of household fomites at 7 time points.

32 citations


Journal ArticleDOI
TL;DR: Clinical cure rates in CARTI subjects treated with azithromycin were higher for Azi-S SPN compared withAzi-R SPN, and the cure rates were not different for subjects infected with LLAR-SPN versus HLAR- SPN.
Abstract: Background: Community-acquired respiratory tract infections (CARTI) are commonly caused by Streptococcus pneumoniae (SPN) and empirically treated with azithromycin. This study assessed clinical cure rates in azithromycin-treated subjects with CARTI caused by azithromycin-susceptible (Azi-S) or azithromycin-resistant (Azi-R) SPN. Methods: 1127 subjects with CARTI (402 acute otitis media, 309 community-acquired pneumonia, 255 acute bacterial exacerbations of chronic bronchitis and 161 acute bacterial sinusitis) in 13 Phase 3 clinical trials (1993 – 2007) had a confirmed pathogen, received azithromycin and were assessed for clinical cure/failure. 34.4% of subjects (388/1127) had a positive culture for SPN; 33.4% (376/1127) had Azi-S or Azi-R SPN. Results: 28.9% (112/388) of subjects with SPN had Azi-R SPN: 35.7% (40/112) were low-level Azi-R SPN (LLAR; MIC 2 –8 mg/L), while 64.3% (72/112) were high-level Azi-R SPN (HLAR; MIC ≥16 mg/L). Among Azi-S and Azi-R SPN CARTI subjects, clinical cure rates were: 86.2% (324/376) overall; 89.4% (236/264) for subjects with Azi-S SPN; 78.6% (88/112) for subjects with Azi-R SPN (P ¼ 0.003, versus Azi-S); 77.5% (31/40) for subjects with LLAR SPN (P,0.001); and 79.2% (57/72) for subjects with HLAR SPN (P ¼0.122). Conclusions: Clinical cure rates in CARTI subjects treated with azithromycin were higher for Azi-S SPN (89.4%) versus Azi-R SPN (78.6%; P ¼ 0.003). However, cure rates were not different for subjects infected with LLARSPN versus HLAR-SPN. At the observed prevalence of Azi-R SPN of 28.9%, an additional 3.1 clinical failures would be predicted, as a consequence of azithromycin resistance (LLAR and HLAR), per 100 subjects treated empirically with azithromycin.

29 citations


Journal ArticleDOI
TL;DR: A previously undescribed mechanism of drug resistance with diagnostic and therapeutic implications is reported in a patient colonized with a vanA-containing, vanRS-negative isolate of Enterococcus faecium which was initially vancomycin susceptible.
Abstract: We report the emergence of vancomycin resistance in a patient colonized with a vanA-containing, vanRS-negative isolate of Enterococcus faecium which was initially vancomycin susceptible. This is a previously undescribed mechanism of drug resistance with diagnostic and therapeutic implications.

25 citations


Book ChapterDOI
09 Apr 2014
TL;DR: Although S. iniae is capable of causing invasive disease in humans, serious disease appears to be rare, and if people take the proper precautionary measures when handling whole, uncooked fish, infections caused by S.Iniae can be prevented.
Abstract: The aquaculture industry, which is increasingly being developed, has not yet been recognized to result in significant human disease. Aquaculture in North America involves diverse farming systems in diverse areas. The criticisms concern contamination of the environment by aquaculture systems through unwanted obstructions to coastal navigation, unsightly cages or pens, aquaculture effluents such as excess food and chemotherapeutics, and the use of nonnative species or native species that are either domesticated or genetically different from wild stocks. The level of contamination of aquaculture products with pathogenic bacteria depends on the environment and the bacteriological quality of the water where the fish are cultured. It should be noted that nonindigenous bacteria of fecal origin could be introduced into aquaculture ponds via contamination by birds and wild animals associated with farm waters. Streptococcus iniae has also been reported to be the causative agent of ongoing infection and excess mortality of tilapia in Texas aquaculture farms. Overcrowding in farms and during transport may have contributed to the increasing importance of streptococcal infections in fish. Finally, although S. iniae commonly colonized the surfaces of tilapia and other species of fish, isolates are genetically diverse. Although S. iniae is capable of causing invasive disease in humans, serious disease appears to be rare, and if people take the proper precautionary measures when handling whole, uncooked fish, infections caused by S. iniae can be prevented.

21 citations


Journal ArticleDOI
TL;DR: The direct effect of antigenic site mutations in influenza viruses on antigenic drift and vaccine effectiveness is poorly understood.
Abstract: Background The direct effect of antigenic site mutations in influenza viruses on antigenic drift and vaccine effectiveness is poorly understood.

Journal ArticleDOI
TL;DR: W Whole-genome sequencing of PA96 enabled characterization of its genomic islands, virulence factors, and chromosomal resistance genes, and analysis of known core genome virulence factor and resistance genes revealed few differences with other strains, but the major virulence island is closer to that of DK2 than to PA14.
Abstract: Pseudomonas aeruginosa PA96 is a clinical isolate from Guangzhou, China, that is multiresistant to antibiotics. We previously described the 500-kb IncP-2 plasmid, pOZ176 that encodes many resistance genes including the IMP-9 carbapenemase. Whole-genome sequencing of PA96 enabled characterization of its genomic islands, virulence factors, and chromosomal resistance genes. We filled gaps using PCR and used optical mapping to confirm the correct contig order. We automatically annotated the core genome and manually annotated the genomic islands. The genome is 6 444 091 bp and encodes 5853 ORFs. From the whole-genome sequence, we constructed a physical map and constructed a phylogenetic tree for comparison with sequenced P. aeruginosa strains. Analysis of known core genome virulence factors and resistance genes revealed few differences with other strains, but the major virulence island is closer to that of DK2 than to PA14. PA96 most closely resembles the environmental strain M18, and notably shares a common serotype, pyoverdin type, flagellar operon, type IV pilin, and several genomic islands with M18.

Journal ArticleDOI
TL;DR: Cetaroline, the active form of the prodrug ceftaroline fosamil, exhibited potent in vitro activity against the tested S. pneumoniae including all 456 multidrug-resistant strains.
Abstract: Between 2008 and 2011, 6,895 Streptococcus pneumoniae isolates were submitted to the Canadian Bacterial Surveillance Network and underwent in vitro susceptibility testing. Fifteen percent of S. pneumoniae isolates were collected from pediatric patients (0–15 years old), 48.6 % of isolates were collected from adults between 16 and 64 years of age, and 36.1 % from adults aged ≥65 years; age data were not available for 11 patients. Forty-five percent of S. pneumoniae isolates were recovered from sterile specimens, and 55 % of isolates were from nonsterile specimens. Overall, 0.4 % of isolates were resistant to penicillin, 0.4 % to ceftriaxone, 3 % to amoxicillin, 25 % to erythromycin, and 13 % to trimethoprim/sulfamethoxazole; 6.6 % of isolates were multidrug resistant (MDR). Among MDR isolates, resistance rates exceeded 95 % for erythromycin, tetracycline, and trimethoprim/sulfamethoxazole. The MIC90 of cethromycin, ceftaroline, and ceftobiprole against MDR isolates were 0.12, 0.25, and 1 mg/L, respectively. Ceftaroline, the active form of the prodrug ceftaroline fosamil, exhibited potent in vitro activity against the tested S. pneumoniae including all 456 multidrug-resistant strains. No ceftaroline-resistant isolates were identified.

Journal ArticleDOI
TL;DR: The validation of a "heat-killing" method to inactivate B. dermatitidis is described, thus allowing cellular material to be removed from the CL3 laboratory for subsequent DNA isolation that is suitable for genetic applications.
Abstract: Manipulation of Blastomyces dermatitidis requires the use of containment level 3 (CL3) practices. However, access to CL3 laboratories is limited and working conditions are restrictive. We describe the validation of a "heat-killing" method to inactivate B. dermatitidis, thus allowing cellular material to be removed from the CL3 laboratory for subsequent DNA isolation that is suitable for genetic applications.