scispace - formally typeset
Search or ask a question

Showing papers by "Enrico De Vita published in 2020"


Journal ArticleDOI
TL;DR: The reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions is shown, and its effects on the quantification of gray matter cerebral blood flow are illustrated.

73 citations


Journal ArticleDOI
TL;DR: Baseline analyte values predicted clinical disease status, subsequent clinical progression, and brain atrophy, better than did the rate of change in analytes, and Overall, NfL was a stronger monitoring and prognostic biomarker for HD than mHTT, which might be a valuable pharmacodynamic marker for huntingtin-lowering trials.
Abstract: The longitudinal dynamics of the most promising biofluid biomarker candidates for Huntington's disease (HD)-mutant huntingtin (mHTT) and neurofilament light (NfL)-are incompletely defined. Characterizing changes in these candidates during disease progression could increase our understanding of disease pathophysiology and help the identification of effective therapies. In an 80-participant cohort over 24 months, mHTT in cerebrospinal fluid (CSF), as well as NfL in CSF and blood, had distinct longitudinal trajectories in HD mutation carriers compared with controls. Baseline analyte values predicted clinical disease status, subsequent clinical progression, and brain atrophy, better than did the rate of change in analytes. Overall, NfL was a stronger monitoring and prognostic biomarker for HD than mHTT. Nonetheless, mHTT has prognostic value and might be a valuable pharmacodynamic marker for huntingtin-lowering trials.

53 citations


Journal ArticleDOI
TL;DR: In this paper, a velocity selective arterial spin labeling preparation module was placed before a multi-echo gradient echo EPI readout to integrate T 2 * and perfusion measurements in 1 joint perfusion-oxygenation (PERFOX) acquisition.
Abstract: Purpose To study placental function-both perfusion and an oxygenation surrogate ( T 2 * )-simultaneously and quantitatively in-vivo. Methods Fifteen pregnant women were scanned on a 3T MR scanner. For perfusion measurements, a velocity selective arterial spin labeling preparation module was placed before a multi-echo gradient echo EPI readout to integrate T 2 * and perfusion measurements in 1 joint perfusion-oxygenation (PERFOX) acquisition. Joint motion correction and quantification were performed to evaluate changes in T 2 * and perfusion over GA. Results The optimized integrated PERFOX protocol and post-processing allowed successful visualization and quantification of perfusion and T 2 * in all subjects. Areas of high T 2 * and high perfusion appear to correspond to placental sub-units and show a systematic offset in location along the maternal-fetal axis. The areas of highest perfusion are consistently closer to the maternal basal plate and the areas of highest T 2 * closer to the fetal chorionic plate. Quantitative results show a strong negative correlation of gestational age with T 2 * and weak negative correlation with perfusion. Conclusions A strength of the joint sequence is that it provides truly simultaneous and co-registered estimates of local T 2 * and perfusion, however, to achieve this, the time per slice is prolonged compared to a perfusion only scan which can potentially limit coverage. The achieved interlocking can be particularly useful when quantifying transient physiological effects such as uterine contractions. PERFOX opens a new avenue to elucidate the relationship between maternal supply and oxygen uptake, both of which are central to placental function and dysfunction.

20 citations


Journal ArticleDOI
TL;DR: This work systematically evaluated essential VS‐ASL sequence parameters to determine optimal settings for efficient placental perfusion measurements and suggested ASL with velocity‐selective labeling could be advantageous in the placenta.
Abstract: Purpose: Placental function is key for successful human pregnancies. Perfusion may be a sensitive marker for the in vivo assessment of placental function. Arterial spin labeling (ASL) MRI enables noninvasive measurement of tissue perfusion and it was recently suggested that ASL with velocity-selective (VS) labeling could be advantageous in the placenta. We systematically evaluated essential VS-ASL sequence parameters to determine optimal settings for efficient placental perfusion measurements.Methods: Eleven pregnant women were scanned at 3T using VS-ASL with 2D multislice echo planar imaging (EPI)-readout. One reference VS-ASL scan was acquired in all subjects; within subgroups the following parameters were systematically varied: cutoff velocity, velocity encoding direction, and inflow time. Visual evaluation and region of interest analyses were performed to compare perfusion signal differences between acquisitions.Results: In all subjects, a perfusion pattern with clear hyperintense focal regions was observed. Perfusion signal decreased with inflow time and cutoff velocity. Subject-specific dependence on velocity encoding direction was observed. High temporal signal-to-noise ratios with high contrast on the perfusion images between the hyperintense regions and placental tissue were seen at similar to 1.6 cm/s cutoff velocity and similar to 1000 ms inflow time. Evaluation of measurements at multiple inflow times revealed differences in blood flow dynamics between placental regions.Conclusion: Placental perfusion measurements are feasible at 3T using VS-ASL with 2D multislice EPI-readout. A clear dependence of perfusion signal on VS labeling parameters and inflow time was demonstrated. Whereas multiple parameter combinations may advance the interpretation of placental circulation dynamics, this study provides a basis to select an effective set of parameters for the observation of placenta perfusion natural history and its potential pathological changes.

19 citations


Journal ArticleDOI
TL;DR: Wearable high-density diffuse optical tomography permits three-dimensional imaging of the human brain function during overt movement of the subject; images of somatomotor cortical activation can be obtained while subjects move in a relatively unconstrained manner, and these images are in good agreement with those obtained while the subjects remain stationary.
Abstract: The ability to produce high-quality images of human brain function in any environment and during unconstrained movement of the subject has long been a goal of neuroimaging research. Diffuse optical tomography, which uses the intensity of back-scattered near-infrared light from multiple source-detector pairs to image changes in haemoglobin concentrations in the brain, is uniquely placed to achieve this goal. Here, we describe a new generation of modular, fibre-less, high-density diffuse optical tomography technology that provides exceptional sensitivity, a large dynamic range, a field-of-view sufficient to cover approximately one-third of the adult scalp, and also incorporates dedicated motion sensing into each module. Using in-vivo measures, we demonstrate a noise-equivalent power of 318 fW, and an effective dynamic range of 142 dB. We describe the application of this system to a novel somatomotor neuroimaging paradigm that involves subjects walking and texting on a smartphone. Our results demonstrate that wearable high-density diffuse optical tomography permits three-dimensional imaging of the human brain function during overt movement of the subject; images of somatomotor cortical activation can be obtained while subjects move in a relatively unconstrained manner, and these images are in good agreement with those obtained while the subjects remain stationary. The scalable nature of the technology we described here paves the way for the routine acquisition of high-quality, three-dimensional, whole-cortex diffuse optical tomography images of cerebral haemodynamics, both inside and outside of the laboratory environment, which has profound implications for neuroscience.

15 citations


Journal ArticleDOI
TL;DR: Investigating early white matter (WM) change in Huntington's disease can improve the understanding of the way in which disease spreads from the striatum.
Abstract: Background Investigating early white matter (WM) change in Huntington's disease (HD) can improve our understanding of the way in which disease spreads from the striatum. Objectives We provide a detailed characterization of pathology-related WM change in HD. We first examined WM microstructure using diffusion-weighted imaging and then investigated both underlying biological properties of WM and products of WM damage including iron, myelin plus neurofilament light, a biofluid marker of axonal degeneration-in parallel with the mutant huntingtin protein. Methods We examined WM change in HD gene carriers from the HD-CSFcohort, baseline visit. We used standard-diffusion magnetic resonance imaging to measure metrics including fractional anisotropy, a marker of WM integrity, and diffusivity; a novel diffusion model (neurite orientation dispersion and density imaging) to measure axonal density and organization; T1-weighted and T2-weighted structural magnetic resonance imaging images to derive proxy iron content and myelin-contrast measures; and biofluid concentrations of neurofilament light (in cerebrospinal fluid (CSF) and plasma) and mutant huntingtin protein (in CSF). Results HD gene carriers displayed reduced fractional anisotropy and increased diffusivity when compared with controls, both of which were also associated with disease progression, CSF, and mutant huntingtin protein levels. HD gene carriers also displayed proxy measures of reduced myelin contrast and iron in the striatum. Conclusion Collectively, these findings present a more complete characterization of HD-related microstructural brain changes. The correlation between reduced fractional anisotropy, increased axonal orientation, and biofluid markers suggest that axonal breakdown is associated with increased WM degeneration, whereas higher quantitative T2 signal and lower myelin-contrast may indicate a process of demyelination limited to the striatum.

14 citations


Journal ArticleDOI
12 Mar 2020-PLOS ONE
TL;DR: A simplified approach to threshold-independent LI calculation is proposed and compared with three previously reported methods on the same cohort of subjects and a more lateralized activation was found in the language area than in the whole hemisphere.
Abstract: The assessment of language lateralization has become widely used when planning neurosurgery close to language areas, due to individual specificities and potential influence of brain pathology. Functional magnetic resonance imaging (fMRI) allows non-invasive and quantitative assessment of language lateralization for presurgical planning using a laterality index (LI). However, the conventional method is limited by the dependence of the LI on the chosen activation threshold. To overcome this limitation, different threshold-independent LI calculations have been reported. The purpose of this study was to propose a simplified approach to threshold-independent LI calculation and compare it with three previously reported methods on the same cohort of subjects. Fifteen healthy subjects, who performed picture naming, verb generation, and word fluency tasks, were scanned. LI values were calculated for all subjects using four methods, and considering either the whole hemisphere or an atlas-defined language area. For each method, the subjects were ranked according to the calculated LI values, and the obtained rankings were compared. All LI calculation methods agreed in differentiating strong from weak lateralization on both hemispheric and regional scales (Spearman's correlation coefficients 0.59-1.00). In general, a more lateralized activation was found in the language area than in the whole hemisphere. The new method is well suited for application in the clinical practice as it is simple to implement, fast, and robust. The good agreement between LI calculation methods suggests that the choice of method is not key. Nevertheless, it should be consistent to allow a relative comparison of language lateralization between subjects.

10 citations


Posted ContentDOI
31 Mar 2020-medRxiv
TL;DR: Overall NfL was a stronger monitoring and prognostic biomarker for HD than mHTT, which possesses prognostic value and is a valuable pharmacodynamic marker for huntingtin-lowering trials.
Abstract: The longitudinal dynamics of the most promising biofluid biomarker candidates for Huntington’s disease (HD) – mutant huntingtin (mHTT) and neurofilament light (NfL) – are incompletely defined, but could help understand the natural history of the disease and how these biomarkers might help in therapeutic development and the clinic. In an 80-participant cohort over 24 months, mHTT in cerebrospinal fluid (CSF), and NfL in CSF and blood, had distinct longitudinal trajectories in HD mutation carriers compared with controls. Baseline analyte values predicted clinical disease status and subsequent clinical progression and brain atrophy, better than did the rate of change in analytes. Overall NfL was a stronger monitoring and prognostic biomarker for HD than mHTT. Nonetheless, mHTT possesses prognostic value and is a valuable pharmacodynamic marker for huntingtin-lowering trials.

7 citations


Journal ArticleDOI
TL;DR: In this article, a model-based reconstruction framework is proposed for motion-corrected and high-resolution anatomically assisted (MOCHA) reconstruction of arterial spin labeling (ASL) data.
Abstract: Purpose A model-based reconstruction framework is proposed for motion-corrected and high-resolution anatomically assisted (MOCHA) reconstruction of arterial spin labeling (ASL) data. In this framework, all low-resolution ASL control-label pairs are used to reconstruct a single high-resolution cerebral blood flow (CBF) map, corrected for rigid-motion, point-spread-function blurring and partial volume effect. Methods Six volunteers were recruited for CBF imaging using pseudo-continuous ASL labeling, two-shot 3D gradient and spin-echo sequences and high-resolution T1 -weighted MRI. For 2 volunteers, high-resolution scans with double and triple resolution in the partition direction were additionally collected. Simulations were designed for evaluations against a high-resolution ground-truth CBF map, including a simulated hyperperfused lesion and hyperperfusion/hypoperfusion abnormalities. The MOCHA technique was compared with standard reconstruction and a 3D linear regression partial-volume effect correction method and was further evaluated for acquisitions with reduced control-label pairs and k-space undersampling. Results The MOCHA reconstructions of low-resolution ASL data showed enhanced image quality, particularly in the partition direction. In simulations, both MOCHA and 3D linear regression provided more accurate CBF maps than the standard reconstruction; however, MOCHA resulted in the lowest errors and well delineated the abnormalities. The MOCHA reconstruction of standard-resolution in vivo data showed good agreement with higher-resolution scans requiring 4-times and 9-times longer acquisitions. The MOCHA reconstruction was found to be robust for 4-times-accelerated ASL acquisitions, achieved by reduced control-label pairs or k-space undersampling. Conclusion The MOCHA reconstruction reduces partial-volume effect by direct reconstruction of CBF maps in the high-resolution space of the corresponding anatomical image, incorporating motion correction and point spread function modeling. Following further evaluation, MOCHA should promote the clinical application of ASL.

3 citations


Journal ArticleDOI
01 Jan 2020
TL;DR: Putamen radial diffusivity has potential as a secondary outcome measure biomarker in future therapeutic trials in human prion diseases and was found to be the strongest predictor of rate of decrease in Medical Research Council Scale.
Abstract: Therapeutic trials of disease-modifying agents in neurodegenerative disease typically require several hundred participants and long durations for clinical endpoints. Trials of this size are not feasible for prion diseases, rare dementia disorders associated with misfolding of prion protein. In this situation, biomarkers are particularly helpful. On diagnostic imaging, prion diseases demonstrate characteristic brain signal abnormalities on diffusion-weighted MRI. The aim of this study was to determine whether cerebral water diffusivity could be a quantitative imaging biomarker of disease severity. We hypothesized that the basal ganglia were most likely to demonstrate functionally relevant changes in diffusivity. Seventy-one subjects (37 patients and 34 controls) of whom 47 underwent serial scanning (23 patients and 24 controls) were recruited as part of the UK National Prion Monitoring Cohort. All patients underwent neurological assessment with the Medical Research Council Scale, a functionally orientated measure of prion disease severity, and diffusion tensor imaging. Voxel-based morphometry, voxel-based analysis of diffusion tensor imaging and regions of interest analyses were performed. A significant voxel-wise correlation of decreased Medical Research Council Scale score and decreased mean, radial and axial diffusivities in the putamen bilaterally was observed (P < 0.01). Significant decrease in putamen mean, radial and axial diffusivities over time was observed for patients compared with controls (P = 0.01), and there was a significant correlation between monthly decrease in putamen mean, radial and axial diffusivities and monthly decrease in Medical Research Council Scale (P < 0.001). Step-wise linear regression analysis, with dependent variable decline in Medical Research Council Scale, and covariates age and disease duration, showed the rate of decrease in putamen radial diffusivity to be the strongest predictor of rate of decrease in Medical Research Council Scale (P < 0.001). Sample size calculations estimated that, for an intervention study, 83 randomized patients would be required to provide 80% power to detect a 75% amelioration of decline in putamen radial diffusivity. Putamen radial diffusivity has potential as a secondary outcome measure biomarker in future therapeutic trials in human prion diseases.

1 citations