scispace - formally typeset
Search or ask a question

Showing papers by "Huige Li published in 2014"


Journal ArticleDOI
TL;DR: This review summarizes the latest advances in the role of ROS-producing enzymes, antioxidative enzymes as well as NO synthases in the initiation and development of atherosclerosis.

525 citations


Journal ArticleDOI
TL;DR: The data show that mtROS trigger the activation of phagocytic and cardiovascular NADPH oxidases, which may have fundamental implications for immune cell activation and development of AT-II-induced hypertension.
Abstract: Aims: Oxidative stress is involved in the development of cardiovascular disease. There is a growing body of evidence for a crosstalk between different enzymatic sources of oxidative stress. With the present study, we sought to determine the underlying crosstalk mechanisms, the role of the mitochondrial permeability transition pore (mPTP), and its link to endothelial dysfunction. Results: NADPH oxidase (Nox) activation (oxidative burst and translocation of cytosolic Nox subunits) was observed in response to mitochondrial reactive oxygen species (mtROS) formation in human leukocytes. In vitro, mtROS-induced Nox activation was prevented by inhibitors of the mPTP, protein kinase C, tyrosine kinase cSrc, Nox itself, or an intracellular calcium chelator and was absent in leukocytes with p47phox deficiency (regulates Nox2) or with cyclophilin D deficiency (regulates mPTP). In contrast, the crosstalk in leukocytes was amplified by mitochondrial superoxide dismutase (type 2) (MnSOD+/−) deficiency. In vivo...

201 citations


Journal ArticleDOI
TL;DR: Dermal overexpression of IL-17A induces systemic endothelial dysfunction, vascular oxidative stress, arterial hypertension, and increases mortality mainly driven by myeloperoxidase+CD11b+GR1+F4/80− inflammatory cells.
Abstract: Objective— Interleukin (IL)-17A is regarded as an important cytokine to drive psoriasis, an inflammatory skin disease marked by increased cardiovascular mortality. We aimed to test the hypothesis that overproduction of IL-17A in the skin leading to dermal inflammation may systemically cause vascular dysfunction in psoriasis-like skin disease. Approach and Results— Conditional overexpression of IL-17A in keratinocytes caused severe psoriasis-like skin inflammation in mice (K14-IL-17Aind/+ mice), associated with increased reactive oxygen species formation and circulating CD11b+ inflammatory leukocytes in blood, with endothelial dysfunction, increased systolic blood pressure, left ventricular hypertrophy, and reduced survival compared with controls. In K14-IL-17Aind/+ mice, immunohistochemistry and flow cytometry revealed increased vascular production of the nitric oxide/superoxide reaction product peroxynitrite and infiltration of the vasculature with myeloperoxidase+CD11b+GR1+F4/80− cells accompanied by increased expression of the inducible nitric oxide synthase and the nicotinamide dinucleotide phosphate (NADPH) oxidase, nox2. Neutrophil depletion by anti-GR-1 antibody injections reduced oxidative stress in blood and vessels. Neutralization of tumor necrosis factor-α and IL-6 (both downstream of IL-17A) reduced skin lesions, attenuated oxidative stress in heart and blood, and partially improved endothelial dysfunction in K14-IL-17Aind/+ mice. Conclusions— Dermal overexpression of IL-17A induces systemic endothelial dysfunction, vascular oxidative stress, arterial hypertension, and increases mortality mainly driven by myeloperoxidase+CD11b+GR1+F4/80− inflammatory cells. Depletion of the GR-1+ immune cells or neutralization of IL-17A downstream cytokines by biologicals attenuates the vascular phenotype in K14-IL-17Aind/+ mice. # Significance {#article-title-54}

182 citations


Journal ArticleDOI
TL;DR: Nitric oxide derived from the endothelial NO synthase (eNOS) has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties.
Abstract: Nitric oxide (NO) derived from the endothelial NO synthase (eNOS) has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

120 citations


Journal ArticleDOI
TL;DR: In this article, the extent of vascular dysfunction and oxidant formation in glutathione peroxidase-1-deficient (GPx-1(-/-)) mice during the aging process with special emphasis on dysregulation (uncoupling) of the endothelial NO synthase.
Abstract: Recently, we demonstrated that gene ablation of mitochondrial manganese superoxide dismutase and aldehyde dehydrogenase-2 markedly contributed to age-related vascular dysfunction and mitochondrial oxidative stress. The present study has sought to investigate the extent of vascular dysfunction and oxidant formation in glutathione peroxidase-1-deficient (GPx-1(-/-)) mice during the aging process with special emphasis on dysregulation (uncoupling) of the endothelial NO synthase. GPx-1(-/-) mice on a C57 black 6 (C57BL/6) background at 2, 6, and 12 months of age were used. Vascular function was significantly impaired in 12-month-old GPx-1(-/-) -mice as compared with age-matched controls. Oxidant formation, detected by 3-nitrotyrosine staining and dihydroethidine-based fluorescence microtopography, was increased in the aged GPx-1(-/-) mice. Aging per se caused a substantial protein kinase C- and protein tyrosine kinase-dependent phosphorylation as well as S-glutathionylation of endothelial NO synthase associated with uncoupling, a phenomenon that was more pronounced in aged GPx-1(-/-) mice. GPx-1 ablation increased adhesion of leukocytes to cultured endothelial cells and CD68 and F4/80 staining in cardiac tissue. Aged GPx-1(-/-) mice displayed increased oxidant formation as compared with their wild-type littermates, triggering redox-signaling pathways associated with endothelial NO synthase dysfunction and uncoupling. Thus, our data demonstrate that aging leads to decreased NO bioavailability because of endothelial NO synthase dysfunction and uncoupling of the enzyme leading to endothelial dysfunction, vascular remodeling, and promotion of adhesion and infiltration of leukocytes into cardiovascular tissue, all of which was more prominent in aged GPx-1(-/-) mice.

108 citations


Journal ArticleDOI
TL;DR: The renin inhibitor aliskiren, angiotensin-converting enzyme inhibitors, AT1 receptor blockers, the selective aldosterone antagonist eplerenone, statins, nebivolol and pentaerithrityl tetranitrate have been shown to have the potential to prevent or reverse eNOS uncoupling under experimental conditions.
Abstract: Under physiological conditions, nitric oxide (NO) is produced in the vasculature mainly by the endothelial NO synthase (eNOS). This endothelium-derived NO is a protective molecule with antihypertensive, antithrombotic and anti-atherosclerotic properties. Cardiovascular risk factors such as hypertension, hypercholesterolemia, cigarette smoking and diabetes mellitus induce oxidative stress mostly by stimulation of the NADPH oxidase. Overproduction of reactive oxygen species leads to oxidation of tetrahydrobiopterin (BH4), the essential cofactor of eNOS. In BH4 deficiency, oxygen reduction uncouples from NO synthesis, thereby converting eNOS to a superoxide- producing enzyme. Consequently, NO production is reduced and the pre-existing oxidative stress is enhanced, which contribute significantly to cardiovascular pathology. Therefore, pharmacological approaches that prevent eNOS uncoupling are of therapeutic interest. Among the drugs currently in clinical use, the renin inhibitor aliskiren, angiotensin-converting enzyme inhibitors, AT1 receptor blockers, the selective aldosterone antagonist eplerenone, statins, nebivolol and pentaerithrityl tetranitrate have been shown to have the potential to prevent or reverse eNOS uncoupling under experimental conditions. Resveratrol, BH4, sepiapterin, folic acid and AVE3085 have also been shown to recouple eNOS and improve endothelial function. The long-term benefit of these compounds, however, is still controversial.

51 citations


Journal ArticleDOI
TL;DR: This paper showed that resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation and enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA.
Abstract: Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol.

48 citations


Journal ArticleDOI
TL;DR: Here, a review of the available literatures on beneficial role of resveratrol on ischemic stroke is reviewed and information about chemistry, sources, bioavailability, as well as clinical impacts of res veratrol is provided.
Abstract: Stroke is one of the most common cardiovascular diseases and is known as a leading cause of death in the world. Despite to its high prevalence, there are limited effective therapeutic strategies for stroke till now. However, oxidative stress plays an important role in the pathogenesis of stroke and therefore, antioxidant therapy could be used as a new therapeutic strategy. Among the antioxidants, some natural compounds are very interesting due to their low adverse effects. Resveratrol (3, 5, 4'-trihydroxystilbene) is a natural polyphenolic antioxidant found in grape skin, grape products, and peanuts as well as in red wine. In recent years, much attention has been paid to resveratrol due to its wide range of antioxidant actions. Resveratrol possesses cardioprotective actions through stimulation of nitric oxide production as well as antioxidative and anti-inflammatory effects. Here we review the available literatures on beneficial role of resveratrol on ischemic stroke. We also provide information about chemistry, sources, bioavailability, as well as clinical impacts of resveratrol.

29 citations


Journal Article
TL;DR: It is demonstrated for the first time that social isolation of adult mice leads to a wide range of global epigenetic changes and these effects may have profound impact on gene expression pattern and phenotype of the socially isolated animals.
Abstract: Social isolation and loneliness increase the risk of death as much as well-established risk factors for mortality such as cigarette smoking and alcohol consumption. The underlying molecular mechanisms are poorly understood. In the present study, 3 months old male C57BL/6 mice were socially isolated by individual housing for another 3 months. At the age of 6 months, epigenetic changes were analyzed in midbrain. Social isolation of male adult mice led to an increased global DNA methylation, which was associated with enhanced activity of DNA methyltransferase. Di- and trimethylation of global histone H3 lysine 4 (H3K4) were increased in midbrain of socially isolated mice, accompanied by enhanced H3K4 histone methyltransferase activity. In addition, social isolation of adult mice led to activation of histone acetyltransferases as well as of histone deacetylases (HDAC) resulting in a net enhancement of histone H3 lysine 9 (H3K9) acetylation. Gene-specific effects were observed for Hdac1, Hdac3 and the serotonin transporter Slc6a4. Social isolation led to an up-regulation of Hdac1 and Hdac3, associated with decreased DNA methylation in the CpG island of the respective genes. On the contrary, the Slc6a4 gene was down-regulated, which was associated with enhanced DNA methylation. Collectively, the results from the present study demonstrate for the first time that social isolation of adult mice leads to a wide range of global epigenetic changes and these effects may have profound impact on gene expression pattern and phenotype of the socially isolated animals.

29 citations


Journal ArticleDOI
TL;DR: Resveratrol possesses multiple protective properties in the vasculature, including anti-oxidative and anti-inflammatory effects and improvement of endothelial function and downregulates NADPH oxidases through yet known mechanisms.
Abstract: Resveratrol (3,5,4'-trihydroxy-trans-stilbene) possesses multiple protective properties in the vasculature, including anti-oxidative and anti-inflammatory effects and improvement of endothelial function. A substantial part of these effects is attributable to gene expression changes induced by the compound. Resveratrol can activate the NAD-dependent deacetylase sirtuin 1 (SIRT1), leading to deacetylation of SIRT1 target molecules such as NF-kB and forkhead box O (FOXO) transcription factors. The inhibition of NF-kB by resveratrol reduces the expression of inflammation mediators. FOXO factors are implicated in the upregulation of antioxidant enzymes and the endothelial-type nitric oxide synthase. In addition, resveratrol upregulates a number of antioxidant enzymes by activating nuclear factor-E2-related factor-2 (Nrf2) and downregulates NADPH oxidases through yet known mechanisms.

27 citations


Journal ArticleDOI
TL;DR: Investigation of the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells found it contains both eNOS-upregulating and iNos-downregulating compounds, which may contribute to the beneficial effects ofArtichoke and may per se have therapeutic potentials.
Abstract: Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

Journal ArticleDOI
TL;DR: Inflammation-related oxidative stress is an important mediator in inflammation-driven atherogenesis and contributes to enhanced atherosclerotic risk in chronic inflammatory diseases.

Journal ArticleDOI
TL;DR: It is suggested that eNOS contributes to endothelium-dependent dilation of murine ophthalmic arteries and neuron density in the retinal ganglion cell (RGC) layer, and the chronic lack of nNOS is functionally compensated by NOS-independent vasodilator mechanisms.

Journal ArticleDOI
TL;DR: The dexamethasone-induced Nox1 expression was completely prevented by scriptaid, a pan-inhibitor of histone deacetylases (HDAC), indicating a crucial role for HDAC enzymes.
Abstract: Background/Aim: It has been demonstrated that dexamethasone-induced hypertension can be prevented by the NADPH oxidase inhibitor apocynin. The effect of dexametha