scispace - formally typeset
Search or ask a question

Showing papers by "Jeffrey D. Simpson published in 2020"


Journal ArticleDOI
TL;DR: In this article, the fastest main-sequence hyper-velocity star (HVS) was discovered by the Southern Stellar Stream Spectroscopic Survey (S5), and the ejection trajectory and transit time of S5-HVS1 coincide with the orbital plane and age of the annular disc of young stars at the Galactic Centre.
Abstract: We present the serendipitous discovery of the fastest main-sequence hyper-velocity star (HVS) by the Southern Stellar Stream Spectroscopic Survey (S5). The star S5-HVS1 is a ∼2.35 M⊙ A-type star located at a distance of ∼9 kpc from the Sun and has a heliocentric radial velocity of 1017 ± 2.7 kms−1 without any signature of velocity variability. The current 3D velocity of the star in the Galactic frame is 1755 ± 50 kms−1⁠. When integrated backwards in time, the orbit of the star points unambiguously to the Galactic Centre, implying that S5-HVS1 was kicked away from Sgr A* with a velocity of ∼1800 kms−1 and travelled for 4.8 Myr to its current location. This is so far the only HVS confidently associated with the Galactic Centre. S5-HVS1 is also the first hyper-velocity star to provide constraints on the geometry and kinematics of the Galaxy, such as the Solar motion Vy,⊙ = 246.1 ± 5.3 kms−1 or position R0 = 8.12 ± 0.23 kpc. The ejection trajectory and transit time of S5-HVS1 coincide with the orbital plane and age of the annular disc of young stars at the Galactic Centre, and thus may be linked to its formation. With the S5-HVS1 ejection velocity being almost twice the velocity of other hyper-velocity stars previously associated with the Galactic Centre, we question whether they have been generated by the same mechanism or whether the ejection velocity distribution has been constant over time.

82 citations



Journal ArticleDOI
TL;DR: In this article, Amarsi et al. used non-LTE calculations for 13 different elements (H, Li, C, N, O, Na, Mg, Al, Si, K, Ca, Mn, and Ba) across a grid of 3756 1D MARCS model atmospheres that spans 3000 ≤ Teff/K ≤ 8000, - 0.5 ≤ log g/cm s-2 ≤ 5.5, and - 5 ≤ [Fe/H] ≤ 1.2 dex.
Abstract: Massive sets of stellar spectroscopic observations are rapidly becoming available and these can be used to determine the chemical composition and evolution of the Galaxy with unprecedented precision. One of the major challenges in this endeavour involves constructing realistic models of stellar spectra with which to reliably determine stellar abundances. At present, large stellar surveys commonly use simplified models that assume that the stellar atmospheres are approximately in local thermodynamic equilibrium (LTE). To test and ultimately relax this assumption, we have performed non-LTE calculations for 13 different elements (H, Li, C, N, O, Na, Mg, Al, Si, K, Ca, Mn, and Ba), using recent model atoms that have physically-motivated descriptions for the inelastic collisions with neutral hydrogen, across a grid of 3756 1D MARCS model atmospheres that spans 3000 ≤ Teff/K ≤ 8000, - 0.5 ≤log g/cm s-2 ≤ 5.5, and - 5 ≤ [Fe/H] ≤ 1. We present the grids of departure coefficients that have been implemented into the GALAH DR3 analysis pipeline in order to complement the extant non-LTE grid for iron. We also present a detailed line-by-line re-analysis of 50 126 stars from GALAH DR3. We found that relaxing LTE can change the abundances by between - 0.7 dex and + 0.2 dex for different lines and stars. Taking departures from LTE into account can reduce the dispersion in the [A/Fe] versus [Fe/H] plane by up to 0.1 dex, and it can remove spurious differences between the dwarfs and giants by up to 0.2 dex. The resulting abundance slopes can thus be qualitatively different in non-LTE, possibly with important implications for the chemical evolution of our Galaxy. The grids of departure coefficients are publicly available and can be implemented into LTE pipelines to make the most of observational data sets from large spectroscopic surveys. Grids of departure coefficients can be found online ( http://Amarsi 2020 http://) or by contacting the lead author directly.

44 citations


Journal ArticleDOI
30 Jul 2020-Nature
TL;DR: The Phoenix stream in the Milky Way halo is shown to be a tidally disrupted remnant of an unusually metal-poor globular cluster, which was possibly destroyed during Galactic evolution.
Abstract: Globular clusters are some of the oldest bound stellar structures observed in the Universe1. They are ubiquitous in large galaxies and are believed to trace intense star-formation events and the hierarchical build-up of structure2,3. Observations of globular clusters in the Milky Way, and a wide variety of other galaxies, have found evidence for a ‘metallicity floor’, whereby no globular clusters are found with chemical (metal) abundances below approximately 0.3 to 0.4 per cent of that of the Sun4–6. The existence of this metallicity floor may reflect a minimum mass and a maximum redshift for surviving globular clusters to form—both critical components for understanding the build-up of mass in the Universe7. Here we report measurements from the Southern Stellar Streams Spectroscopic Survey of the spatially thin, dynamically cold Phoenix stellar stream in the halo of the Milky Way. The properties of the Phoenix stream are consistent with it being the tidally disrupted remains of a globular cluster. However, its metal abundance ([Fe/H] = −2.7) is substantially below the empirical metallicity floor. The Phoenix stream thus represents the debris of the most metal-poor globular clusters discovered so far, and its progenitor is distinct from the present-day globular cluster population in the local Universe. Its existence implies that globular clusters below the metallicity floor have probably existed, but were destroyed during Galactic evolution. The Phoenix stream in the Milky Way halo is shown to be a tidally disrupted remnant of an unusually metal-poor globular cluster, which was possibly destroyed during Galactic evolution.

37 citations


Journal ArticleDOI
TL;DR: In this paper, the integrals of motion for 31 234 stars, to a distance of 4 kpc from the Sun, were calculated using a combination of data mining, numerical, and statistical techniques.
Abstract: Streams of stars from captured dwarf galaxies and dissolved globular clusters are identifiable through the similarity of their orbital parameters, a fact that remains true long after the streams have dispersed spatially. We calculate the integrals of motion for 31 234 stars, to a distance of 4 kpc from the Sun, which have full and accurate 6D phase space positions in the Gaia DR2 catalogue. We then apply a novel combination of data mining, numerical, and statistical techniques to search for stellar streams. This process returns five high confidence streams (including one which was previously undiscovered), all of which display tight clustering in the integral of motion space. Colour–magnitude diagrams indicate that these streams are relatively simple, old, metal-poor populations. One of these resolved streams shares very similar kinematics and metallicity characteristics with the Gaia-Enceladus dwarf galaxy remnant, but with a slightly younger age. The success of this project demonstrates the usefulness of data mining techniques in exploring large data sets. (Less)

35 citations


Journal ArticleDOI
TL;DR: In this article, a data-driven approach to estimate abundances from low-resolution (R = 1800) LAMOST spectra, using the GALAH survey as their reference, is presented.
Abstract: Large stellar surveys are revealing the chemodynamical structure of the Galaxy across a vast spatial extent. However, the many millions of low-resolution spectra observed to date are yet to be fully exploited. We employ The Cannon, a data-driven approach to estimating abundances, to obtain detailed abundances from low-resolution (R = 1800) LAMOST spectra, using the GALAH survey as our reference. We deliver five (for dwarfs) or six (for giants) estimated abundances representing five different nucleosynthetic channels, for 3.9 million stars, to a precision of 0.05 - 0.23 dex. Using wide binary pairs, we demonstrate that our abundance estimates provide chemical discriminating power beyond metallicity alone. We show the coverage of our catalogue with radial, azimuthal and dynamical abundance maps, and examine the neutron capture abundances across the disk and halo, which indicate different origins for the in-situ and accreted halo populations. LAMOST has near-complete Gaia coverage and provides an unprecedented perspective on chemistry across the Milky Way.

33 citations


Journal ArticleDOI
TL;DR: In this paper, spectroscopic measurements of the ATLAS and Aliqa Uma streams from the Southern Stellar Stream Spectroscopic Survey ($S^5$), in combination with the photometric data from the Dark Energy Survey and astrometric data from $Gaia, were presented.
Abstract: We present the first spectroscopic measurements of the ATLAS and Aliqa Uma streams from the Southern Stellar Stream Spectroscopic Survey ($S^5$), in combination with the photometric data from the Dark Energy Survey and astrometric data from $Gaia$. From the coherence of spectroscopic members in radial velocity and proper motion, we find out that these two systems are physically one stream with discontinuity in morphology and density on the sky (the "kink" feature). We refer to this entire stream as ATLAS-Aliqa Uma stream, or AAU stream. We perform a comprehensive exploration of the effect of baryonic substructures and find that only an encounter with the Sagittarius dwarf $\sim 0.5$ Gyr ago can create a feature similar to the observed "kink". In addition, we also identify two gaps in the ATLAS component associated with the broadening in the stream width (the "broadening" feature). These gaps have likely been created by small mass perturbers, such as dark matter halos, as AAU stream is the most distant cold stream known with severe variations in both the stream surface density and the stream track on the sky. With the stream track, stream distance and kinematic information, we determine the orbit of the AAU stream and find that it has been affected by the Large Magellanic Cloud, resulting in a misalignment between the proper motion and stream track. Together with the Orphan-Chenab Stream, AAU is the second stream pair that has been found to be a single stream separated into two segments by external perturbation.

33 citations


Journal ArticleDOI
TL;DR: The Pristine Inner Galaxy Survey (PIGS) as discussed by the authors was designed to find the metal-poor stars in the inner galaxy using CaHK photometry from the CFHT.
Abstract: Metal-poor stars are important tools for tracing the early history of the Milky Way, and for learning about the first generations of stars. Simulations suggest that the oldest metal-poor stars are to be found in the inner Galaxy. Typical bulge surveys, however, lack low metallicity ( $\rm {[Fe/H]} \lt -1.0$ ) stars because the inner Galaxy is predominantly metal-rich. The aim of the Pristine Inner Galaxy Survey (PIGS) is to study the metal-poor and very metal-poor (VMP, $\rm {[Fe/H]} \lt -2.0$ ) stars in this region. In PIGS, metal-poor targets for spectroscopic follow-up are selected from metallicity-sensitive CaHK photometry from the CFHT. This work presents the ∼250 deg2 photometric survey as well as intermediate-resolution spectroscopic follow-up observations for ∼8000 stars using AAOmega on the AAT. The spectra are analysed using two independent tools: ULySS with an empirical spectral library, and FERRE with a library of synthetic spectra. The comparison between the two methods enables a robust determination of the stellar parameters and their uncertainties. We present a sample of 1300 VMP stars - the largest sample of VMP stars in the inner Galaxy to date. Additionally, our spectroscopic data set includes ∼1700 horizontal branch stars, which are useful metal-poor standard candles. We furthermore show that PIGS photometry selects VMP stars with unprecedented efficiency: 86 per cent/80 per cent (lower/higher extinction) of the best candidates satisfy $\rm {[Fe/H]} \lt -2.0$ , as do 80 per cent/63 per cent of a larger, less strictly selected sample. We discuss future applications of this unique data set that will further our understanding of the chemical and dynamical evolution of the innermost regions of our Galaxy.

31 citations


Journal ArticleDOI
TL;DR: In this paper, high-resolution Magellan/MIKE spectroscopy of 42 red giant stars in seven stellar streams confirmed by the Southern Stellar Stream Spectroscopic Survey (S5): ATLAS, Aliqa Uma, Chenab, Elqui, Indus, Jhelum, and Phoenix.
Abstract: We present high-resolution Magellan/MIKE spectroscopy of 42 red giant stars in seven stellar streams confirmed by the Southern Stellar Stream Spectroscopic Survey (S5): ATLAS, Aliqa Uma, Chenab, Elqui, Indus, Jhelum, and Phoenix. Abundances of 30 elements have been derived from over 10,000 individual line measurements or upper limits using photometric stellar parameters and a standard LTE analysis. This is currently the most extensive set of element abundances for stars in stellar streams. Three streams (ATLAS, Aliqa Uma, and Phoenix) are disrupted metal-poor globular clusters, although only weak evidence is seen for the light element anticorrelations commonly observed in globular clusters. Four streams (Chenab, Elqui, Indus, and Jhelum) are disrupted dwarf galaxies, and their stars display abundance signatures that suggest progenitors with stellar masses ranging from $10^6-10^7 M_\odot$. Extensive description is provided for the analysis methods, including the derivation of a new method for including the effect of stellar parameter correlations on each star's abundance and uncertainty. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

30 citations


Journal ArticleDOI
TL;DR: In this article, a grid of 1D MARCS model atmospheres for different elements (H, Li, C, N, O, Na, Mg, Al, Si, K, Ca, Mn, and Ba) is presented.
Abstract: Massive sets of stellar spectroscopic observations are rapidly becoming available and these can be used to determine the chemical composition and evolution of the Galaxy with unprecedented precision. One of the major challenges in this endeavour involves constructing realistic models of stellar spectra with which to reliably determine stellar abundances. At present, large stellar surveys commonly use simplified models that assume that the stellar atmospheres are approximately in local thermodynamic equilibrium (LTE). To test and ultimately relax this assumption, we have performed non-LTE calculations for $13$ different elements (H, Li, C, N, O, Na, Mg, Al, Si, K, Ca, Mn, and Ba), using recent model atoms that have physically-motivated descriptions for the inelastic collisions with neutral hydrogen, across a grid of $3756$ 1D MARCS model atmospheres that spans $3000\leq T_{\mathrm{eff}}/\mathrm{K}\leq8000$, $-0.5\leq\log{g/\mathrm{cm\,s^{-2}}}\leq5.5$, and $-5\leq\mathrm{[Fe/H]}\leq1$. We present the grids of departure coefficients that have been implemented into the GALAH DR3 analysis pipeline in order to complement the extant non-LTE grid for iron. We also present a detailed line-by-line re-analysis of $50126$ stars from GALAH DR3. We found that relaxing LTE can change the abundances by between $-0.7\,\mathrm{dex}$ and $+0.2\,\mathrm{dex}$ for different lines and stars. Taking departures from LTE into account can reduce the dispersion in the $\mathrm{[A/Fe]}$ versus $\mathrm{[Fe/H]}$ plane by up to $0.1\,\mathrm{dex}$, and it can remove spurious differences between the dwarfs and giants by up to $0.2\,\mathrm{dex}$. The resulting abundance slopes can thus be qualitatively different in non-LTE, possibly with important implications for the chemical evolution of our Galaxy.

27 citations


Journal ArticleDOI
TL;DR: Using kinematics from Gaia and the large elemental abundance space of the second data release of the GALAH survey, the authors identify two new members of the Fimbulthul stellar stream, and chemically tag them to massive, multimetallic globular cluster ω Centauri.
Abstract: Using kinematics from Gaia and the large elemental abundance space of the second data release of the GALAH survey, we identify two new members of the Fimbulthul stellar stream, and chemically tag them to massive, multimetallic globular cluster ω Centauri. Recent analysis of the second data release of Gaia had revealed the Fimbulthul stellar stream in the halo of the Milky Way. It had been proposed that the stream is associated with the ω Cen, but this proposition relied exclusively upon the kinematics and metallicities of the stars to make the association. In this work, we find our two new members of the stream to be metal-poor stars that are enhanced in sodium and aluminium, typical of second population globular cluster stars, but not otherwise seen in field stars. Furthermore, the stars share the s-process abundance pattern seen in ω Cen, which is rare in field stars. Apart from one star within 1.5 deg of ω Cen, we find no other stars observed by GALAH spatially near ω Cen or the Fimbulthul stream that could be kinematically and chemically linked to the cluster. Chemically tagging stars in the Fimbulthul stream to ω Cen confirms the earlier work, and further links this tidal feature in the Milky Way halo to ω Cen.

Journal ArticleDOI
TL;DR: In this article, the authors present the largest high-resolution analysis of Li abundances A(Li) to date, with results for over $100, 000$ GALAH (Galactic Archeology with HERMES) field stars spanning effective temperatures $5900, \mathrm{K} \lesssim T.
Abstract: Lithium depletion and enrichment in the cosmos is not yet well understood. To help tighten constraints on stellar and Galactic evolution models, we present the largest high-resolution analysis of Li abundances A(Li) to date, with results for over $100\, 000$ GALAH (Galactic Archeology with HERMES) field stars spanning effective temperatures $5900\, \mathrm{K} \lesssim T_{\mathrm{eff}}\lesssim 7000\, \mathrm{K}$ and metallicities-3 â [Fe/H] â +0.5. We separated these stars into two groups, on the warm and cool sides of the so-called Li dip, a localized region of the Kiel diagram wherein lithium is severely depleted. We discovered that stars in these two groups show similar trends in the A(Li)-[Fe/H] plane, but with a roughly constant offset in A(Li) of $0.4\, \mathrm{dex}$, the warm group having higher Li abundances. At $\rm [Fe/H]\gtrsim-0.5$, a significant increase in Li abundance with increasing metallicity is evident in both groups, signalling the onset of significant Galactic production. At lower metallicity, stars in the cool group sit on the Spite plateau, showing a reduced lithium of around $0.4\, \mathrm{dex}$ relative to the primordial value predicted from big bang nucleosynthesis (BBN). However, stars in the warm group between [Fe/H] =-1.0 and-0.5 form an elevated plateau that is largely consistent with the BBN prediction. This may indicate that these stars in fact preserve the primordial Li produced in the early Universe. (Less)

Journal ArticleDOI
TL;DR: In this article, the authors present isochrone ages and initial bulk metallicities of 163 722 stars from the GALAH Data Release 2, mainly composed of main-sequence turn-off stars and subgiants.
Abstract: We present isochrone ages and initial bulk metallicities ([Fe/H]_{bulk}, by accounting for diffusion) of 163 722 stars from the GALAH Data Release 2, mainly composed of main-sequence turn-off stars and subgiants (7000 K> T_{ eff}> 4000 K and log g>3 dex). The local age- metallicity relationship (AMR) is nearly flat but with significant scatter at all ages; the scatter is even higher when considering the observed surface abundances. After correcting for selection effects, the AMR appears to have intrinsic structures indicative of two star formation events, which we speculate are connected to the thin and thick discs in the solar neighbourhood. We also present abundance ratio trends for 16 elements as a function of age, across different [Fe/H]_{bulk} bins. In general, we find the trends in terms of [X/Fe] versus age from our far larger sample to be compatible with studies based on small (∼100 stars) samples of solar twins, but we now extend them to both sub- and supersolar metallicities. The α-elements show differing behaviour: the hydrostatic α-elements O and Mg show a steady decline with time for all metallicities, while the explosive α-elements Si, Ca, and Ti are nearly constant during the thin-disc epoch (ages ≲ 12 Gyr). The s-process elements Y and Ba show increasing [X/Fe] with time while the r-process element Eu has the opposite trend, thus favouring a primary production from sources with a short time delay such as core-collapse supernovae over long-delay events such as neutron star mergers.

Journal ArticleDOI
TL;DR: In this paper, the Southern Stellar Streams Spectroscopic survey of the spatially thin, dynamically cold Phoenix stellar stream in the halo of the Milky Way was used to detect the debris of the most metal-poor globular cluster.
Abstract: Globular clusters are some of the oldest bound stellar structures observed in the Universe. They are ubiquitous in large galaxies and are believed to trace intense star formation events and the hierarchical build-up of structure. Observations of globular clusters in the Milky Way, and a wide variety of other galaxies, have found evidence for a `metallicity floor', whereby no globular clusters are found with chemical (`metal') abundances below approximately 0.3 to 0.4 per cent of that of the Sun. The existence of this metallicity floor may reflect a minimum mass and a maximum redshift for surviving globular clusters to form, both critical components for understanding the build-up of mass in the universe. Here we report measurements from the Southern Stellar Streams Spectroscopic Survey of the spatially thin, dynamically cold Phoenix stellar stream in the halo of the Milky Way. The properties of the Phoenix stream are consistent with it being the tidally disrupted remains of a globular cluster. However, its metal abundance ([Fe/H] = -2.7) is substantially below that of the empirical metallicity floor. The Phoenix stream thus represents the debris of the most metal-poor globular cluster discovered so far, and its progenitor is distinct from the present-day globular cluster population in the local Universe. Its existence implies that globular clusters below the metallicity floor have probably existed, but were destroyed during Galactic evolution.

Posted Content
TL;DR: In this article, the effect of metallicity and surface gravity over the range 4000 to 8000 kelvin on the effective temperature of stars has been investigated and the internal uncertainty of these calibrations is of order 40-80 kelvins depending on the colour combination used.
Abstract: In order to accurately determine stellar properties, knowledge of the effective temperature of stars is vital. We implement Gaia and 2MASS photometry in the InfraRed Flux Method and apply it to stars across different evolutionary stages in the GALAH DR3 survey. We derive colour-effective temperature relations that take into account the effect of metallicity and surface gravity over the range 4000 to 8000 kelvin. The internal uncertainty of these calibrations is of order 40-80 kelvin depending on the colour combination used. Comparison against solar-twins, Gaia benchmark stars and the latest interferometric measurements validates the precision and accuracy of these calibrations from F to early M spectral types. We assess the impact of various sources of uncertainties and provide guidelines to use our relations.

Journal ArticleDOI
TL;DR: In this paper, a sample of 12760 well-characterised double-lined spectroscopic binaries that are appropriate for statistical studies of the binary populations were detected as SB2s using a t-distributed stochastic neighbour embedding (t-SNE) classification and a cross-correlation analysis of GALAH spectra.
Abstract: Binary stellar systems form a large fraction of the Galaxy's stars. They are useful as laboratories for studying the physical processes taking place within stars, and must be correctly taken into account when observations of stars are used to study the structure and evolution of the Galaxy. We present a sample of 12760 well-characterised double-lined spectroscopic binaries that are appropriate for statistical studies of the binary populations. They were detected as SB2s using a t-distributed stochastic neighbour embedding (t-SNE) classification and a cross-correlation analysis of GALAH spectra. This sample consists mostly of dwarfs, with a significant fraction of evolved stars and several dozen members of the giant branch. To compute parameters of the primary and secondary star ($T_{\rm eff[1,2]}$, $\log g_{[1,2]}$, [Fe/H], $V_{r[1,2]}$, $v_{\rm mic[1,2]}$, $v_{\rm broad[1,2]}$, $R_{[1,2]}$, and $E(B-V)$), we used a Bayesian approach that includes a parallax prior from Gaia DR2, spectra from GALAH, and apparent magnitudes from APASS, Gaia DR2, 2MASS, and WISE. The derived stellar properties and their distributions show trends that are expected for a population of close binaries (a $<$ 10 AU) with mass ratios $0.5 \leq q \leq 1$. The derived metallicity of these binary stars is statistically lower than that of single dwarf stars from the same magnitude-limited sample.

Journal ArticleDOI
TL;DR: In this paper, a large sample of double-lined spectroscopic binaries (SB2s) was obtained by analysis of spectra from the GALAH survey in combination with photometric and astrometric data.
Abstract: Context. Binary stellar systems form a large fraction of the Galaxy’s stars. They are useful as laboratories for studying the physical processes taking place within stars, and must be correctly taken into account when observations of stars are used to study the structure and evolution of the Galaxy. The advent of large-scale spectroscopic and photometric surveys allows us to obtain large samples of binaries that permit characterising their populations.Aims. We aim to obtain a large sample of double-lined spectroscopic binaries (SB2s) by analysis of spectra from the GALAH survey in combination with photometric and astrometric data. A combined analysis will provide stellar parameters of thousands of binary stars that can be combined to form statistical observables of a given population. We aim to produce a catalogue of well-characterised systems, which can in turn be compared to models of populations of binary stars, or to follow-up individual systems of interest.Methods. We obtained a list of candidate SB2 systems from a t-distributed stochastic neighbour embedding (t-SNE) classification and a cross-correlation analysis of GALAH spectra. To compute parameters of the primary and secondary star, we used a Bayesian approach that includes a parallax prior from Gaia DR2, spectra from GALAH, and apparent magnitudes from APASS, Gaia DR2, 2MASS, and WISE. We used a Markov chain Monte Carlo approach to sample the posterior distributions of the following model parameters for the two stars: T eff[1,2] , logg [1,2] , [Fe/H], V r [1,2] , v mic[1,2] , v broad[1,2] , R [1,2] , and E (B −V ).Results. We present results for 12 760 binary stars detected as SB2s. We construct the statistical observables T 1 ∕T 2 , ΔV r , and R 1 ∕R 2 , which demonstrate that our sample mostly consists of dwarfs, with a significant fraction of evolved stars and several dozen members of the giant branch. The majority of these binary stars is concentrated at the lower boundary of the ΔV r distribution, and the R 1 ∕R 2 ratio is mostly close to unity. The derived metallicity of our binary stars is statistically lower than that of single dwarf stars from the same magnitude-limited sample.Conclusions. Our sample of binary stars represents a large population of well-characterised double-lined spectroscopic binaries that are appropriate for statistical studies of the binary populations. The derived stellar properties and their distributions show trends that are expected for a population of close binary stars (a ≤ 1.

Posted Content
TL;DR: In this article, the authors explore the dependence of elemental abundances on stellar age and metallicity among Galactic disc stars and find that the abundance of most elements can be predicted from age and [Fe/H] with an intrinsic scatter of about 0.03 dex.
Abstract: Using data from the GALAH survey, we explore the dependence of elemental abundances on stellar age and metallicity among Galactic disc stars. We find that the abundance of most elements can be predicted from age and [Fe/H] with an intrinsic scatter of about 0.03 dex. We discuss the possible causes for the existence of the abundance-age-metallicity relations. Using a stochastic chemical enrichment scheme based on the size of Supernovae remnants, we show the intrinsic scatter is expected to be small, about 0.05 dex or even smaller if there is additional mixing in the ISM. Elemental abundances show trends with both age and metallicity and the relationship is well described by a simple model in which the dependence of abundance ([X/Fe]) on age and [Fe/H] are additively separable. Elements can be grouped based on the direction of their abundance gradient in the (age,[Fe/H]) plane and different groups can be roughly associated with three distinct nucleosynthetic production sites, the exploding massive stars, the exploding white dwarfs and the AGB stars. However, the abundances of some elements, like Co, La, and Li, show large scatter for a given age and metallicity, suggesting processes other than simple Galactic chemical evolution are at play. We also compare the abundance trends of main-sequence turn-off stars against that of giants, whose ages were estimated using asteroseismic information from the K2 mission. For most elements, the trends of main-sequence turn-off stars are similar to that of giants. The existence of abundance relations implies that we can estimate the age and birth radius of disc stars, which is important for studying the dynamic and chemical evolution of the Galaxy.

Posted Content
TL;DR: In this article, the authors used the machine learning algorithm $XGBoost$ to estimate the ages of 250,000 stars taken from GALAH DR3 using only their overall metallicity and chemical abundances.
Abstract: Previous studies have found that the elemental abundances of a star correlate directly with its age and metallicity. Using this knowledge, we derive ages for a sample of 250,000 stars taken from GALAH DR3 using only their overall metallicity and chemical abundances. Stellar ages are estimated via the machine learning algorithm $XGBoost$, using main sequence turnoff stars with precise ages as our input training set. We find that the stellar ages for the bulk of the GALAH DR3 sample are accurate to 1-2 Gyr using this method. With these ages, we replicate many recent results on the age-kinematic trends of the nearby disk, including the age-velocity dispersion relationship of the solar neighborhood and the larger global velocity dispersion relations of the disk found using $Gaia$ and GALAH. The fact that chemical abundances alone can be used to determine a reliable age for a star have profound implications for the future study of the Galaxy as well as upcoming spectroscopic surveys. These results show that the chemical abundance variation at a given birth radius is quite small, and imply that strong chemical tagging of stars directly to birth clusters may prove difficult with our current elemental abundance precision. Our results highlight the need of spectroscopic surveys to deliver precision abundances for as many nucleosynthetic production sites as possible in order to estimate reliable ages for stars directly from their chemical abundances. Applying the methods outlined in this paper opens a new door into studies of the kinematic structure and evolution of the disk, as ages may potentially be estimated for a large fraction of stars in existing spectroscopic surveys. This would yield a sample of millions of stars with reliable age determinations, and allow precise constraints to be put on various kinematic processes in the disk, such as the efficiency and timescales of radial migration.

Posted Content
03 Jun 2020
TL;DR: In this paper, the authors investigated the properties of 1306 red giant stars with high photospheric abundances of lithium observed by the GALAH, K2-HERMES and TESS-HERMS surveys, and discuss them in the context of proposed mechanisms for lithium enrichment in giant stars.
Abstract: We investigate the properties of 1306 red giant stars with high photospheric abundances of lithium observed by the GALAH, K2-HERMES and TESS-HERMES surveys, and discuss them in the context of proposed mechanisms for lithium enrichment in giant stars. We confirm that Li-rich giants are rare, making up only 1.1 per cent of our giant star sample. We use GALAH+ DR3 stellar parameters and a Bayesian isochrone analysis to divide the sample into first-ascent red giant branch and red clump stars, and confirm these classifications using asteroseismic data from K2. We find that red clump stars are more than three times as likely to be lithium-rich as red giant branch stars, and the occurrence rate of lithium richness with metallicity is quite different between the two populations. The probability for a rapidly rotating giant to be lithium-rich is distinctly higher as compared to a non rapidly rotating giant, independent of its evolutionary state. There is also a clear correspondence on the red clump between rapid rotation and extreme levels of lithium enrichment. There are almost no stars on the secondary red clump with lithium abundances above the primordial level, indicating a mass dependence in the red clump lithium enrichment mechanism(s). The complex distribution of lithium-rich giants across evolutionary phase, metallicity, rotation rate and mass implies multiple independent mechanisms for producing lithium enrichment.

Journal ArticleDOI
TL;DR: In this paper, the authors present the orbit and properties of 2MASS J050051.85-093054.9, the closest extremely low mass white dwarf to the Sun.
Abstract: We present the orbit and properties of 2MASS J050051.85-093054.9, establishing it as the closest (d ~ 71 pc) extremely low mass white dwarf to the Sun. We find that this star is hydrogen-rich with Teff ~ 10 500 K, log g ~ 5.9, and, following evolutionary models, has a mass of ~ 0.17 solar masses. Independent analysis of radial velocity and TESS photometric time series reveals an orbital period of ~ 9.5 h. Its high velocity amplitude (K ~ 144 km/s) produces a measurable Doppler beaming effect in the TESS light curve with an amplitude of 1 mmag. The unseen companion is most likely a faint white dwarf. J0500-0930 belongs to a class of post-common envelope systems that will most likely merge through unstable mass transfer and in specific circumstances lead to Type Ia supernova explosions.

Journal ArticleDOI
TL;DR: In this article, a data-driven approach to estimate abundances from low-resolution (R = 1800) LAMOST spectra, using the GALAH survey as their reference, is presented.
Abstract: Large stellar surveys are revealing the chemodynamical structure of the Galaxy across a vast spatial extent. However, the many millions of low-resolution spectra observed to date are yet to be fully exploited. We employ The Cannon, a data-driven approach to estimating abundances, to obtain detailed abundances from low-resolution (R = 1800) LAMOST spectra, using the GALAH survey as our reference. We deliver five (for dwarfs) or six (for giants) estimated abundances representing five different nucleosynthetic channels, for 3.9 million stars, to a precision of 0.05 - 0.23 dex. Using wide binary pairs, we demonstrate that our abundance estimates provide chemical discriminating power beyond metallicity alone. We show the coverage of our catalogue with radial, azimuthal and dynamical abundance maps, and examine the neutron capture abundances across the disk and halo, which indicate different origins for the in-situ and accreted halo populations. LAMOST has near-complete Gaia coverage and provides an unprecedented perspective on chemistry across the Milky Way.

Journal ArticleDOI
TL;DR: In this article, the authors present complete host-star parameters and planet-candidate radii for 224 K2 candidate candidates from the K2-HERMES survey, which uses the HERMES multi-object spectrograph on the Anglo-Australian Telescope to obtain $R\sim 28\, 000$ spectra for more than 30 000 K2 stars.
Abstract: Accurate and precise radius estimates of transiting exoplanets are critical for understanding their compositions and formation mechanisms. To know the planet, we must know the host star in as much detail as possible. We present complete results for planet-candidate hosts from the K2-HERMES survey, which uses the HERMES multi-object spectrograph on the Anglo-Australian Telescope to obtain $R\sim 28\, 000$ spectra for more than 30 000 K2 stars. We present complete host-star parameters and planet-candidate radii for 224 K2 candidate planets from C1-C13. Our results cast severe doubt on 30 K2 candidates, as we derive unphysically large radii, larger than 2RJup. This work highlights the importance of obtaining accurate, precise, and self-consistent stellar parameters for ongoing large planet search programs - something that will only become more important in the coming years, as TESS begins to deliver its own harvest of exoplanets.

Posted Content
TL;DR: In this article, the authors compared the GALAH scaled and APOGEE scaled metallicity distribution functions (MDF) and found similar [$\alpha$/Fe] vs [Fe/H] trends using both samples consistent with previous observational as well as simulation based studies.
Abstract: GALAH and APOGEE are two high resolution multi object spectroscopic surveys that provide fundamental stellar parameters and multiple elemental abundance estimates for $>$ 400,000 stars in the Milky Way. They are complimentary in both sky coverage and wavelength regime. Thus combining the two surveys will provide us a large sample to investigate the disc metallicity and alpha abundance trends. We use the Cannon data-driven approach selecting training sets from among $\sim$20,000 stars in common for the two surveys to predict the GALAH scaled stellar parameters from APOGEE spectra as well as APOGEE scaled stellar parameters from GALAH spectra. We provide two combined catalogues with GALAH scaled and APOGEE scaled stellar parameters each having $\sim$500,000 stars after quality cuts. With $\sim$470,000 stars that are common in both these catalogues, we compare the GALAH scaled and APOGEE scaled metallicity distribution functions (MDF), radial and vertical metallicity gradients as well as the variation of [$\alpha$/Fe] vs [Fe/H] trends along and away from the Galactic mid plane. We find mean metallicities of APOGEE scaled sample to be higher compared to that for the GALAH scaled sample. We find similar [$\alpha$/Fe] vs [Fe/H] trends using both samples consistent with previous observational as well as simulation based studies. Radial and vertical metallicity gradients derived using the two survey scaled samples are consistent except in the inner and outer Galactocentric radius bins. Our gradient estimates in the solar neighborhood are also consistent with previous studies and are backed by larger sample size compared to previous works.

Journal ArticleDOI
19 May 2020
TL;DR: In this article, the relationship between the metallicity of red giant branch (RGB) stars and the equivalent widths of their Ca ii triplet lines was investigated using Gaia photometry.
Abstract: I present a new empirical calibration, using Gaia photometry, of the relationship between the metallicity of red giant branch (RGB) stars and the equivalent widths of their Ca ii triplet lines. The equivalent widths are taken from a spectral library of 2050 RGB stars from 18 globular clusters observed with the Anglo-Australian Telescope's AAOmega spectrograph between 2006 and 2017. The stars cover a metallicity range of .

Posted Content
TL;DR: GALAH+ as mentioned in this paper provides reduced spectra with new derivations of stellar parameters and abundances of 30 chemical elements for 584,015 dwarfs and giants, 88% of them in the Gaia magnitude range 11 =3 visits spanning more than a year.
Abstract: GALAH+ is a magnitude-limited survey of high resolution stellar spectra obtained by the HERMES spectrograph at the Australian Astronomical Observatory. Its third data release provides reduced spectra with new derivations of stellar parameters and abundances of 30 chemical elements for 584,015 dwarfs and giants, 88% of them in the Gaia magnitude range 11 =3 visits spanning more than a year. The combination of radial velocities from GALAH+ with distances and sky plane motions from Gaia enables studies of dynamics within streams and clusters. For example, we show that the open cluster M67 has a total mass of ~3300 Msun and seems to be slowly contracting and rotating. This is likely a consequence of a perturbation during the cluster's last passage through the Galactic disc ~40 Myr ago.