scispace - formally typeset
Search or ask a question

Showing papers by "John R. Cary published in 2008"


Journal ArticleDOI
TL;DR: In this article, a gas jet was used to control the wake phase velocity and trapping threshold in a laser wakefield accelerator, producing stable electron bunches with longitudinal and transverse momentum spreads more than ten times lower than in previous experiments.
Abstract: Plasma density gradients in a gas jet were used to control the wake phase velocity and trapping threshold in a laser wakefield accelerator, producing stable electron bunches with longitudinal and transverse momentum spreads more than ten times lower than in previous experiments (0.17 and 0.02 MeV/c FWHM, respectively) and with central momenta of 0.76 +- 0.02 MeV/c. Transition radiation measurements combined with simulations indicated that the bunches can be used as a wakefield accelerator injector to produce stable beams with 0.2 MeV/c-class momentum spread at high energies.

337 citations


Journal ArticleDOI
TL;DR: In this paper, stable GeV-class electron beams were generated from stable few-millimetre-long plasma channels in a self-guided wakefield acceleration process. But the stability of beam generation and the ability to scale to higher electron beam energies are critical issues for practical laser acceleration.
Abstract: Table-top laser-driven plasma accelerators are gaining attention for their potential use in miniaturizing future high-energy accelerators. By irradiating gas jet targets with ultrashort intense laser pulses, the generation of quasimonoenergetic electron beams was recently observed. Currently, the stability of beam generation and the ability to scale to higher electron beam energies are critical issues for practical laser acceleration. Here, we demonstrate the first generation of stable GeV-class electron beams from stable few-millimetre-long plasma channels in a self-guided wakefield acceleration process. As primary evidence of the laser wakefield acceleration in a bubble regime, we observed a boost of both the electron beam energy and quality by reducing the plasma density and increasing the plasma length in a 1-cm-long gas jet. Subsequent three-dimensional simulations show the possibility of achieving even higher electron beam energies by minimizing plasma bubble elongation, and we anticipate dramatic increases in beam energy and quality in the near future. This will pave the way towards ultracompact, all-optical electron beam accelerators and their applications in science, technology and medicine.

272 citations


Journal ArticleDOI
TL;DR: In this paper, the origin of beam disparity in emittance and betatron oscillation orbits, in and out of the polarization plane of the drive laser of laser-plasma accelerators, is explained in terms of Betatron oscillations driven by the laser field.
Abstract: The origin of beam disparity in emittance and betatron oscillation orbits, in and out of the polarization plane of the drive laser of laser-plasma accelerators, is explained in terms of betatron oscillations driven by the laser field. As trapped electrons accelerate, they move forward and interact with the laser pulse. For the bubble regime, a simple model is presented to describe this interaction in terms of a harmonic oscillator with a driving force from the laser and a restoring force from the plasma wake field. The resulting beam oscillations in the polarization plane, with period approximately the wavelength of the driving laser, increase emittance in that plane and cause microbunching of the beam. These effects are observed directly in 3D particle-in-cell simulations.

85 citations


Journal ArticleDOI
TL;DR: This paper documents the public release PR08 of the International Tokamak Physics Activity (ITPA) profile database, which should be of particular interest to the magnetic confinement fusion community.
Abstract: This paper documents the public release PR08 of the International Tokamak Physics Activity (ITPA) profile database, which should be of particular interest to the magnetic confinement fusion community. Data from a wide variety of interesting discharges from many of the world's leading tokamak experiments are now made available in PR08, which also includes predictive simulations of an initial set of operating scenarios for ITER. In this paper we describe the discharges that have been included and the tools that are available to the reader who is interested in accessing and working with the data. Most discharge descriptions refer to more detailed previous publications. In addition, we review physics analyses that have already made use of the profile database discharges. Public access to PR08 data is unconditional, but this paper should be cited by any publication that makes use of PR08 data.

56 citations


Journal ArticleDOI
TL;DR: A sandwich target design with a thin compound ion layer between two light-ion layers and a micro-structured target design are proposed for obtaining monoenergetic heavy-ion beams.
Abstract: A method for efficient laser acceleration of heavy ions by electrostatic shock is investigated using particle-in-cell (PIC) simulation and analytical modeling. When a small number of heavy ions are mixed with light ions, the heavy ions can be accelerated to the same velocity as the light ions so that they gain much higher energy because of their large mass. Accordingly, a sandwich target design with a thin compound ion layer between two light-ion layers and a micro-structured target design are proposed for obtaining monoenergetic heavy-ion beams.

49 citations


Journal ArticleDOI
TL;DR: In this paper, the performance of the PLASMONX TS source in several operating regimes was explored, including preliminary results on a source based on e-bunches produced by laser wakefield acceleration and controlled injection via density down ramp.
Abstract: Thomson scattering of laser pulses onto ultrarelativistic e-bunches is becoming an advanced source of tunable, quasi-monochromatic, and ultrashort X/gamma radiation. Sources aimed at reaching a high flux of scattered photons need to be driven by high-brightness e-beams, whereas extremely short (femtosecond scale or less) sources need to make femtosecond-long e-beams that collide with the laser pulses. In this paper, we explore the performance of the PLASMONX TS source in several operating regimes, including preliminary results on a source based on e-bunches produced by laser wakefield acceleration and controlled injection via density down ramp.

36 citations


Journal ArticleDOI
01 Jul 2008
TL;DR: In this paper, a large-scale kinetic simulation of particle beam-driven plasma wakefield accelerators is presented, which can be used as an injector to increase beam quality by orders of magnitude.
Abstract: Laser- and particle beam-driven plasma wakefield accelerators produce accelerating fields thousands of times higher than radio-frequency accelerators, offering compactness and ultrafast bunches to extend the frontiers of high energy physics and to enable laboratory-scale radiation sources. Large-scale kinetic simulations provide essential understanding of accelerator physics to advance beam performance and stability and show and predict the physics behind recent demonstration of narrow energy spread bunches. Benchmarking between codes is establishing validity of the models used and, by testing new reduced models, is extending the reach of simulations to cover upcoming meter-scale multi-GeV experiments. This includes new models that exploit Lorentz boosted simulation frames to speed calculations. Simulations of experiments showed that recently demonstrated plasma gradient injection of electrons can be used as an injector to increase beam quality by orders of magnitude. Simulations are now also modeling accelerator stages of tens of GeV, staging of modules, and new positron sources to design next-generation experiments and to use in applications in high energy physics and light sources.

30 citations


Journal ArticleDOI
TL;DR: A variant of the filter-diagonalization method, using targeted excitation to filter out unwanted modes, can extract exactly or nearly degenerate eigenmodes and frequencies from time-domain simulations, offering advantages of simplicity, flexibility and ease of implementation.

26 citations


Journal ArticleDOI
TL;DR: In this paper, a truncated, dielectric photonic crystal cavity is constructed from 18 rods and parity symmetry breaking occurs, and the number of rods required to achieve the same Q-factor with a regular lattice requires 60 rods.
Abstract: Optimization of a truncated, dielectric photonic crystal cavity leads to configurations that are far from truncated crystal cavities, and which have significantly better radiation confinement. Starting from a two-dimensional truncated photonic crystal cavity with optimal Q-factor, moving the rods from the lattice positions can increase the Q-factor by orders of magnitude, e.g., from 130 to 11 000 for a cavity constructed from 18 rods. In the process, parity symmetry breaking occurs. Achieving the same Q-factor with a regular lattice requires 60 rods. Therefore, using optimized irregular structures for photonic cavities can greatly reduce material requirements and device size.

20 citations


Journal ArticleDOI
TL;DR: In the injection of electron-Bernstein waves (EBW) into a plasma, proposed for plasma heating and current drive in over-dense plasma, conversion of the fundamental to its second harmonic is predicted analytically and observed in computations.
Abstract: In the injection of electron-Bernstein waves (EBW) into a plasma, proposed for plasma heating and current drive in over-dense plasma, conversion of the fundamental to its second harmonic is predicted analytically and observed in computations. The mechanism is traced to the existence of locations where one can have both wave number and frequency matching between the fundamental and its harmonic. Further, at such locations, the second harmonic commonly has minimal group velocity, and this allows the amplitude of the second harmonic to build to values exceeding that of the fundamental at power levels less than anticipated in experiments. The second-harmonic power can then be deposited at half-harmonic resonances of the original wave, often far from the desired location of energy deposition. Estimates for the power at which this is significant are given.

18 citations


Journal ArticleDOI
01 Jul 2008
TL;DR: FACETS (Framework Application for Core-Edge Transport Simulations), now in its second year, has achieved its first coupled core-edge transport simulations, with a new parallel core component, a new wall component, improvements in edge and source components, and the framework for coupling all of this together.
Abstract: FACETS (Framework Application for Core-Edge Transport Simulations), now in its second year, has achieved its first coupled core-edge transport simulations. In the process, a number of accompanying accomplishments were achieved. These include a new parallel core component, a new wall component, improvements in edge and source components, and the framework for coupling all of this together. These accomplishments were a result of an interdisciplinary collaboration among computational physics, computer scientists, and applied mathematicians on the team.

Journal ArticleDOI
01 Aug 2008
TL;DR: SciDAC2 as mentioned in this paper supports the community Petascale Project for Accelerator Science and Simulation (ComPASS) through close collaborations with SciDAC CETs/Institutes in computational science, and new multi-physics tools are developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale.
Abstract: SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES).

08 Sep 2008
TL;DR: In this paper, a three-dimensional laser wakefield acceleration (LWFA) simulation was performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC.
Abstract: Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a0 and that full and reduced PIC agree well for values of a0 approaching 4.

Journal ArticleDOI
TL;DR: The SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling, providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift.
Abstract: The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R & D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.


08 Sep 2008
TL;DR: In this article, the authors demonstrated stable beam performance at 1.5 GeV with an order of magnitude lower absolute momentum spread than previously observed, and post-accelerated the beam from controlled injection experiments.
Abstract: Compact high-energy linacs are important to applications including monochromatic gamma sources for nuclear material security applications. Recent laser wakefield accelerator experiments at LBNL demonstrated narrow energy spread beams, now with energies of up to 1 GeV in 3 cm using a plasma channel at low density. This demonstrates the production of GeV beams from devices much smaller than conventional linacs, and confirms the anticipated scaling of laser driven accelerators to GeV energies. Stable performance at 0.5 GeV was demonstrated. Experiments and simulations are in progress to control injection of particles into the wake and hence to improve beam quality and stability. Using plasma density gradients to control injection, stable beams at 1 MeV over days of operation, and with an order of magnitude lower absolute momentum spread than previously observed, have been demonstrated. New experiments are post-accelerating the beams from controlled injection experiments to increase beam quality and stability. Thomson scattering from such beams is being developed to provide collimated multi-MeV monoenergetic gamma sources for security applications from compact devices. Such sources can reduce dose to target and increase accuracy for applications including photofission and nuclear resonance fluorescence.