scispace - formally typeset
Search or ask a question

Showing papers by "L. Tassan-Got published in 2019"


Journal ArticleDOI
M. Mastromarco1, A. Manna2, A. Manna1, O. Aberle3, J. Andrzejewski4, L. Audouin5, M. Bacak5, M. Bacak3, M. Bacak6, J. Balibrea, Mario Barbagallo1, F. Bečvář7, E. Berthoumieux5, J. Billowes8, D. Bosnar9, A. S. Brown10, M. Caamaño11, F. Calviño12, Marco Calviani3, D. Cano-Ott, R. Cardella3, A. Casanovas12, D. M. Castelluccio13, D. M. Castelluccio1, F. Cerutti3, Y. H. Chen5, E. Chiaveri8, E. Chiaveri3, G. Clai13, G. Clai1, Nicola Colonna1, G. Cortes12, M. A. Cortés-Giraldo, L. Cosentino14, L. A. Damone15, L. A. Damone1, M. Diakaki5, C. Domingo-Pardo16, R. Dressler17, E. Dupont5, I. Duran11, B. Fernández-Domínguez11, Arnaud Ferrari3, P. Ferreira18, P. Finocchiaro14, V. Furman19, Kathrin Göbel, A. R. García, A. Gawlik4, Simone Gilardoni3, T. Glodariu20, I. F. Gonçalves18, E. González-Romero, E. Griesmayer6, Carlos Guerrero, F. Gunsing5, F. Gunsing3, A. Guglielmelli13, Hideo Harada, S. Heinitz17, J. Heyse21, D. G. Jenkins10, E. Jericha6, F. Käppeler22, Y. Kadi3, A. Kalamara23, P. Kavrigin6, A. Kimura, N. Kivel17, I. Knapova7, M. Kokkoris23, M. Krtička7, Deniz Kurtulgil, E. Leal-Cidoncha11, C. Lederer24, H. Leeb6, J. Lerendegui-Marco, S. J. Lonsdale24, D. Macina3, J. Marganiec4, J. Marganiec25, T. Martinez, A. Masi3, Cristian Massimi1, Cristian Massimi2, P. F. Mastinu1, E. A. Maugeri17, Annamaria Mazzone1, E. Mendoza, A. Mengoni12, A. Mengoni1, P. M. Milazzo1, F. Mingrone3, A. Musumarra26, A. Musumarra14, A. Negret20, Ralf Nolte25, A. Oprea20, N. Patronis27, A. Pavlik28, J. Perkowski4, I. Porras29, Javier Praena29, J. M. Quesada, D. Radeck25, Thomas Rauscher30, Thomas Rauscher31, Rene Reifarth, F. Rocchi13, C. Rubbia3, J. A. Ryan8, M. Sabaté-Gilarte3, A. K. Saxena32, P. Schillebeeckx21, D. Schumann17, P. V. Sedyshev18, A. G. Smith8, N. V. Sosnin8, A. Stamatopoulos23, G. Tagliente1, J. L. Tain16, Ariel Tarifeño-Saldivia12, L. Tassan-Got5, S. Valenta7, G. Vannini2, G. Vannini1, V. Variale1, P. Vaz18, Alberto Ventura1, Vasilis Vlachoudis3, R. Vlastou23, Anton Wallner33, S. Warren8, C. Weiss6, R. Winants21, Philip Woods24, T. J. Wright8, Petar Žugec3, Petar Žugec9 
TL;DR: In this paper, the authors used the time-of-flight (TOF) technique at the n_TOF facility at CERN on isotopically enriched samples to perform cross section measurements on 155 Gd and 157 Gd.
Abstract: Neutron capture cross section measurements on 155 Gd and 157 Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C 6 D 6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155 Gd and 157 Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155 Gd and 157 Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 - 4 and 2. 17 (41) × 10 - 4 ; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155 Gd and n + 157 Gd systems, respectively.

23 citations


Journal ArticleDOI
S. Amaducci, L. Cosentino, Massimo Barbagallo, N. Colonna, A. Mengoni, Cristian Massimi, S. Lo Meo, Paolo Finocchiaro, O. Aberle, J. Andrzejewski, L. Audouin, M. Bacak, J. Balibrea, F. Bečvář, E. Berthoumieux, J. Billowes, D. Bosnar, A. S. Brown, M. Caamaño, F. Calviño, Marco Calviani, D. Cano-Ott, R. Cardella, A. Casanovas, F. Cerutti, Y. H. Chen, E. Chiaveri, G. Cortes, M. A. Cortés-Giraldo, L. A. Damone, M. Diakaki, C. Domingo-Pardo, Rugard Dressler, E. Dupont, I. Duran, B. Fernández-Domínguez, Arnaud Ferrari, Pedro G. Ferreira, V. Furman, Kathrin Göbel, A. R. García, A. Gawlik, Simone Gilardoni, T. Glodariu, I. F. Gonçalves, E. González-Romero, E. Griesmayer, Carlos Guerrero, F. Gunsing, Hideo Harada, S. Heinitz, Jan Heyse, D. G. Jenkins, E. Jericha, F. Käppeler, Y. Kadi, A. Kalamara, P. Kavrigin, A. Kimura, Niko Kivel, I. Knapova, M. Kokkoris, M. Krtička, Deniz Kurtulgil, E. Leal-Cidoncha, C. Lederer, H. Leeb, J. Lerendegui-Marco, S. J. Lonsdale, D. Macina, A. Manna, J. Marganiec, T. Martinez, A. Masi, P. F. Mastinu, M. Mastromarco, Emilio Andrea Maugeri, Annamaria Mazzone, E. Mendoza, P. M. Milazzo, F. Mingrone, A. Musumarra, Alexandru Negret, Ralf Nolte, A. Oprea, N. Patronis, A. Pavlik, J. Perkowski, Ignacio Porras, Javier Praena, J. M. Quesada, D. Radeck, Thomas Rauscher, Rene Reifarth, C. Rubbia, J. A. Ryan, M. Sabaté-Gilarte, A. K. Saxena, Peter Schillebeeckx, Dorothea Schumann, P. V. Sedyshev, A. G. Smith, N. V. Sosnin, A. Stamatopoulos, G. Tagliente, J. L. Tain, Ariel Tarifeño-Saldivia, L. Tassan-Got, S. Valenta, G. Vannini, V. Variale, P. Vaz, A. Ventura, Vasilis Vlachoudis, R. Vlastou, Anton Wallner, S. Warren, C. Weiss, P. J. Woods, T. J. Wright, Petar Žugec 
TL;DR: In this paper, the 235U(n,f) cross section was measured in a wide energy range at n_TOF relative to 6Li (n,t) and 10B(n-alpha), with high resolution and in a high energy range, with a setup based on a stack of six samples and six silicon detectors placed in the neutron beam.
Abstract: The 235U(n,f) cross section was measured in a wide energy range at n_TOF relative to 6Li(n,t) and 10B(n,alpha), with high resolution and in a wide energy range, with a setup based on a stack of six samples and six silicon detectors placed in the neutron beam. This allowed us to make a direct comparison of the reaction yields under the same experimental conditions, and taking into account the forward/backward emission asymmetry. A hint of an anomaly in the 10÷30 keV neutron energy range had been previously observed in other experiments, indicating a cross section systematically lower by several percent relative to major evaluations. The present results indicate that the evaluated cross section in the 9÷18 keV neutron energy range is indeed overestimated, both in the recent updates of ENDF/B-VIII.0 and of the IAEA reference data. Furthermore, these new high-resolution data confirm the existence of resonance-like structures in the keV neutron energy region. The new, high accuracy results here reported may lead to a reduction of the uncertainty in the 1÷100 keV neutron energy region. Finally, the present data provide additional confidence on the recently re-evaluated cross section integral between 7.8 and 11 eV.

17 citations


Journal ArticleDOI
A. Gawlik, Claudia Lederer-Woods, J. Andrzejewski, U. Battino, P. Ferreira, F. Gunsing, S. Heinitz, M. Krtička, Cristian Massimi, F. Mingrone, J. Perkowski, Rene Reifarth, A. Tattersall, S. Valenta, C. Weiss, O. Aberle, L. Audouin, M. Bacak, J. Balibrea, Mario Barbagallo, S. Barros, V. Bécares, F. Bečvář, C. Beinrucker, E. Berthoumieux, J. Billowes, Damir Bosnar, M. Brugger, M. Caamaño, F. Calviño, Marco Calviani, D. Cano-Ott, R. Cardella, A. Casanovas, D. M. Castelluccio, F. Cerutti, Y. H. Chen, E. Chiaveri, Nicola Colonna, G. Cortes, M. A. Cortés-Giraldo, L. Cosentino, L. A. Damone, M. Diakaki, M. Dietz, C. Domingo-Pardo, R. Dressler, E. Dupont, I. Duran, B. Fernández-Domínguez, Alfredo Ferrari, Paolo Finocchiaro, V. Furman, K. Göbel, A. R. García, T. Glodariu, I. F. Gonçalves, E. González-Romero, A. Goverdovski, E. Griesmayer, Carlos Guerrero, Hideo Harada, Tanja Heftrich, J. Heyse, D. G. Jenkins, E. Jericha, F. Käppeler, Y. Kadi, Tatsuya Katabuchi, P. Kavrigin, V. Ketlerov, V. Khryachkov, A. Kimura, N. Kivel, I. Knapova, M. Kokkoris, E. Leal-Cidoncha, H. Leeb, J. Lerendegui-Marco, S. Lo Meo, S. J. Lonsdale, Roberto Losito, D. Macina, J. Marganiec, T. Martinez, P. F. Mastinu, M. Mastromarco, Francesca Matteucci, E. A. Maugeri, E. Mendoza, Alberto Mengoni, P. M. Milazzo, M. Mirea, S. Montesano, A. Musumarra, R. Nolte, A. Oprea, N. Patronis, A. Pavlik, J. I. Porras, Javier Praena, J. M. Quesada, K. Rajeev, Thomas Rauscher, A. Riego-Perez, P. C. Rout, Carlo Rubbia, J. A. Ryan, M. Sabaté-Gilarte, A. Saxena, P. Schillebeeckx, Stefan Schmidt, D. Schumann, P. V. Sedyshev, A. G. Smith, A. Stamatopoulos, G. Tagliente, J. L. Tain, Ariel Tarifeño-Saldivia, L. Tassan-Got, A. Tsinganis, G. Vannini, V. Variale, P. Vaz, Alberto Ventura, V. Vlachoudis, R. Vlastou, Anton Wallner, S. Warren, Mario Weigand, C. Wolf, Philip Woods, T. Wright, Petar Žugec 
TL;DR: In this paper, the authors calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar).
Abstract: Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The $(n,\gamma)$ cross section on $^{70}Ge$, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n_TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from $kT=5 keV$ to $kT=100 keV$ and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while they are systematically smaller for neutron energies above 150 keV. We have calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60–80.

17 citations


Journal ArticleDOI
S. Amaducci1, L. Cosentino, Mario Barbagallo2, Nicola Colonna2, Alberto Mengoni2, Alberto Mengoni3, Cristian Massimi2, Cristian Massimi4, S. Lo Meo3, S. Lo Meo2, Paolo Finocchiaro, O. Aberle5, J. Andrzejewski6, L. Audouin7, M. Bacak7, M. Bacak8, M. Bacak5, J. Balibrea, F. Bečvář9, E. Berthoumieux7, J. Billowes10, Damir Bosnar11, A. S. Brown12, M. Caamaño13, F. Calviño14, Marco Calviani5, D. Cano-Ott, R. Cardella5, A. Casanovas14, F. Cerutti5, Y. H. Chen7, E. Chiaveri10, E. Chiaveri15, E. Chiaveri5, G. Cortes14, M. A. Cortés-Giraldo15, L. A. Damone16, L. A. Damone2, M. Diakaki7, C. Domingo-Pardo17, R. Dressler18, E. Dupont7, I. Duran13, B. Fernández-Domínguez13, Alfredo Ferrari5, P. Ferreira19, V. Furman20, K. Göbel21, A. R. García, A. Gawlik6, Simone Gilardoni5, T. Glodariu, I. F. Gonçalves19, E. González-Romero, E. Griesmayer8, Carlos Guerrero15, F. Gunsing5, F. Gunsing7, Hideo Harada22, S. Heinitz18, J. Heyse, D. G. Jenkins12, E. Jericha8, F. Käppeler23, Y. Kadi5, A. Kalamara24, P. Kavrigin8, A. Kimura22, N. Kivel18, I. Knapova9, M. Kokkoris24, M. Krtička9, Deniz Kurtulgil21, E. Leal-Cidoncha13, C. Lederer25, H. Leeb8, J. Lerendegui-Marco15, S. J. Lonsdale25, D. Macina5, A. Manna4, A. Manna2, J. Marganiec26, J. Marganiec6, T. Martinez, A. Masi5, P. F. Mastinu, M. Mastromarco2, E. A. Maugeri18, Annamaria Mazzone2, E. Mendoza, P. M. Milazzo2, F. Mingrone5, A. Musumarra1, Alexandru Negret, R. Nolte26, A. Oprea, N. Patronis27, A. Pavlik28, J. Perkowski6, Ignacio Porras29, Javier Praena29, J. M. Quesada15, D. Radeck26, Thomas Rauscher30, Thomas Rauscher31, Rene Reifarth21, Carlo Rubbia5, J. A. Ryan10, M. Sabaté-Gilarte5, M. Sabaté-Gilarte15, A. Saxena32, P. Schillebeeckx, D. Schumann18, P. V. Sedyshev20, A. G. Smith10, N. V. Sosnin10, A. Stamatopoulos24, G. Tagliente2, J. L. Tain17, Ariel Tarifeño-Saldivia14, L. Tassan-Got7, S. Valenta9, G. Vannini4, G. Vannini2, V. Variale2, P. Vaz19, Alberto Ventura2, V. Vlachoudis5, R. Vlastou24, Anton Wallner33, S. Warren10, C. Weiss8, Philip Woods25, T. Wright10, Petar Žugec11, Petar Žugec5 
TL;DR: In this paper, the authors measured the 235U(n, f) cross section at n_TOF relative to 6Li n, t and 10B n,α, with high resolution (L= 183. 49 (2) m) and in a wide energy range (25meV-170keV).
Abstract: The 235U(n, f) cross section was measured at n_TOF relative to 6Li(n, t) and 10B(n,α) , with high resolution (L= 183. 49 (2) m) and in a wide energy range (25meV-170keV) with 1.5% systematic uncertainty, making use of a stack of six samples and six silicon detectors placed in the neutron beam. This allowed us to make a direct comparison of the yields of the 235U(n, f) and of the two reference reactions under the same experimental conditions, and taking into account the forward/backward emission asymmetry. A hint of an anomaly in the 10-30keV neutron energy range had been previously observed in other experiments, indicating a cross section systematically lower by several percent relative to major evaluations. The present results indicate that the cross section in the 9-18keV neutron energy range is indeed overestimated by almost 5% in the recently released evaluated data files ENDF/B-VIII.0 and JEFF3.3, as a consequence of a 7% overestimate in a single GMA node in the IAEA reference file. Furthermore, these new high-resolution data confirm the existence of resonance-like structures in the keV neutron energy region. The results here reported may lead to a reduction of the uncertainty in the 1-100keV neutron energy region. Finally, from the present data, a value of 249. 7 ± 1. 4 (stat) ± 0. 94 (syst) b·eV has been extracted for the cross section integral between 7.8 and 11eV, confirming the value of 247. 5 ± 3 b·eV recently established as a standard.

13 citations


Journal ArticleDOI
Claudia Lederer-Woods1, Claudia Lederer-Woods2, U. Battino2, Pedro G. Ferreira3, A. Gawlik4, Carlos Guerrero5, F. Gunsing6, F. Gunsing7, S. Heinitz8, J. Lerendegui-Marco5, Alberto Mengoni9, Rene Reifarth1, A. Tattersall2, S. Valenta10, C. Weiss11, C. Weiss6, O. Aberle6, J. Andrzejewski4, L. Audouin7, V. Bécares, M. Bacak11, J. Balibrea, Mario Barbagallo12, S. Barros3, F. Bečvář10, C. Beinrucker1, Fabio Belloni7, E. Berthoumieux7, J. Billowes, Damir Bosnar13, M. Brugger6, M. Caamaño14, F. Calviño15, Marco Calviani6, D. Cano-Ott, F. Cerutti6, E. Chiaveri6, Nicola Colonna12, G. Cortes15, M. A. Cortés-Giraldo5, L. Cosentino, L. A. Damone12, L. A. Damone16, K. Deo17, M. Diakaki18, M. Diakaki7, M. Dietz2, C. Domingo-Pardo19, R. Dressler8, E. Dupont7, I. Duran14, B. Fernández-Domínguez14, Alfredo Ferrari6, Paolo Finocchiaro, R. J. W. Frost20, V. Furman21, K. Göbel1, A. R. García, Ioana Gheorghe, T. Glodariu, I. F. Gonçalves3, E. González-Romero, A. Goverdovski, E. Griesmayer11, Hideo Harada22, Tanja Heftrich1, A. Hernández-Prieto6, A. Hernández-Prieto15, J. Heyse, D. G. Jenkins23, E. Jericha11, F. Käppeler24, Y. Kadi6, Tatsuya Katabuchi25, P. Kavrigin11, V. Ketlerov, V. Khryachkov, A. Kimura22, Niko Kivel8, I. Knapova10, M. Kokkoris18, M. Krtička10, E. Leal-Cidoncha14, H. Leeb11, M. Licata26, M. Licata12, S. Lo Meo9, S. Lo Meo12, Roberto Losito6, D. Macina6, J. Marganiec4, T. Martinez, Cristian Massimi26, Cristian Massimi12, P. F. Mastinu12, M. Mastromarco12, Francesca Matteucci12, Francesca Matteucci27, E. Mendoza, P. M. Milazzo12, F. Mingrone12, M. Mirea, S. Montesano6, A. Musumarra28, Ralf Nolte29, F. R. Palomo-Pinto5, C. Paradela14, N. Patronis30, A. Pavlik31, J. Perkowski4, J. I. Porras6, J. I. Porras32, Javier Praena5, J. M. Quesada5, Thomas Rauscher33, Thomas Rauscher34, A. Riego-Perez15, M. S. Robles14, C. Rubbia6, J. A. Ryan20, M. Sabaté-Gilarte6, M. Sabaté-Gilarte5, A. Saxena17, P. Schillebeeckx, Stefan Schmidt1, D. Schumann8, P. V. Sedyshev21, A. G. Smith20, A. Stamatopoulos18, S. V. Suryanarayana17, G. Tagliente12, J. L. Tain19, Ariel Tarifeño-Saldivia19, L. Tassan-Got7, A. Tsinganis18, G. Vannini12, G. Vannini26, V. Variale12, P. Vaz3, Alberto Ventura12, V. Vlachoudis6, R. Vlastou18, Anton Wallner35, S. Warren20, Mario Weigand1, T. Wright, Petar Žugec13 
TL;DR: In this paper, the authors measured the stellar cross section at kT = 30 keV, which is 1.5 to 1.7 times higher than most theoretical predictions, and showed that the new cross sections result in a substantial decrease of 73Ge produced in stars, which would explain the low isotopic abundance of 73 Ge in the solar system.

11 citations


Journal ArticleDOI
TL;DR: In counting experiments associated with pulsed sources, a high data collection rate can lead to considerably large counting losses, especially in the counting experiments as mentioned in this paper, where the counting losses can be very large.
Abstract: In counting experiments associated with pulsed sources, a high data collection rate can lead to considerably large counting losses, especially in the

4 citations


Journal ArticleDOI
M. Bacak1, M. Bacak2, M. Bacak3, M. Aiche4, G. Bélier, E. Berthoumieux1, M. Diakaki1, E. Dupont1, F. Gunsing3, F. Gunsing1, Jan Heyse, Stefan Kopecky, B. Laurent, H. Leeb2, L. Mathieu4, Peter Schillebeeckx, O. Serot, J. Taieb, Vasilis Vlachoudis3, O. Aberle3, J. Andrzejewski5, L. Audouin1, J. Balibrea, Mario Barbagallo6, F. Bečvář7, J. Billowes8, D. Bosnar9, A. S. Brown10, M. Caamaño11, F. Calviño12, Marco Calviani3, D. Cano-Ott, R. Cardella3, A. Casanovas12, F. Cerutti3, Y. H. Chen1, E. Chiaveri13, E. Chiaveri8, E. Chiaveri3, Nicola Colonna6, G. Cortes12, M. A. Cortés-Giraldo13, L. Cosentino, L. A. Damone6, L. A. Damone14, C. Domingo-Pardo15, Rugard Dressler16, I. Duran11, B. Fernández-Domínguez11, Arnaud Ferrari3, Pedro G. Ferreira17, Paolo Finocchiaro, V. Furman18, Kathrin Göbel19, A. R. García, A. Gawlik5, Simone Gilardoni3, T. Glodariu, I. F. Gonçalves17, E. González-Romero, E. Griesmayer2, Carlos Guerrero13, Hideo Harada20, S. Heinitz16, D. G. Jenkins10, E. Jericha2, F. Käppeler21, Y. Kadi3, A. Kalamara22, P. Kavrigin2, A. Kimura20, Niko Kivel16, I. Knapova7, M. Kokkoris22, M. Krtička7, Deniz Kurtulgil19, E. Leal-Cidoncha11, C. Lederer23, J. Lerendegui-Marco13, S. Lo Meo24, S. Lo Meo6, S. J. Lonsdale23, D. Macina3, A. Manna25, A. Manna6, J. Marganiec26, J. Marganiec5, T. Martinez, A. Masi3, Cristian Massimi6, Cristian Massimi25, P. F. Mastinu6, M. Mastromarco6, Emilio Andrea Maugeri16, Annamaria Mazzone6, E. Mendoza, A. Mengoni24, P. M. Milazzo6, F. Mingrone3, A. Musumarra27, Alexandru Negret, Ralf Nolte26, A. Oprea, N. Patronis28, A. Pavlik29, J. Perkowski5, Ignacio Porras30, Javier Praena30, J. M. Quesada13, D. Radeck26, Thomas Rauscher31, Thomas Rauscher32, Rene Reifarth19, C. Rubbia3, J. A. Ryan8, M. Sabaté-Gilarte3, M. Sabaté-Gilarte13, A. K. Saxena33, Dorothea Schumann16, P. V. Sedyshev18, A. G. Smith8, N. V. Sosnin8, A. Stamatopoulos22, G. Tagliente6, J. L. Tain15, Ariel Tarifeño-Saldivia12, L. Tassan-Got1, S. Valenta7, G. Vannini25, G. Vannini6, V. Variale6, P. Vaz17, Alberto Ventura6, R. Vlastou22, Anton Wallner34, S. Warren8, C. Weiss2, Philip Woods23, T. J. Wright8, Petar Žugec3, Petar Žugec9 
TL;DR: In this article, the authors used the Total Absorption Calorimeter (TAC) of n_TOF coupled with a novel compact ionization chamber as fission detector to measure the capture-to-fission ratio.
Abstract: $^{233}$U is of key importance among the fissile nuclei in the Th-U fuel cycle. A particularity of 233U is its small neutron capture cross-section, which is on average about one order of magnitude lower than the fission cross-section. The accuracy in the measurement of the 233U capture cross-section depends crucially on an efficient capture-fission discrimination, thus a combined set-up of fission and $\gamma$-detectors is needed. A measurement of the $^{233}$U capture cross-section and capture-to-fission ratio was performed at the CERN n_TOF facility. The Total Absorption Calorimeter (TAC) of n_TOF was employed as $\gamma$-detector coupled with a novel compact ionization chamber as fission detector. A brief description of the experimental set-up will be given, and essential parts of the analysis procedure as well as the preliminary response of the set-up to capture are presented and discussed.

3 citations


Journal ArticleDOI
V. Alcayne, A. Kimura1, E. Mendoza, D. Cano-Ott, T. Martinez, O. Aberle2, J. Andrzejewski3, L. Audouin4, V. Bécares, M. Bacak2, M. Bacak5, M. Bacak4, Mario Barbagallo2, Mario Barbagallo6, F. Becčvář7, G. Bellia8, E. Berthoumieux4, J. Billowes9, Damir Bosnar10, A. S. Brown11, Maurizio Busso12, Maurizio Busso6, M. Caamaño13, L. Caballero-Ontanaya14, F. Calviño15, Marco Calviani2, A. Casanovas15, F. Cerutti2, Y. H. Chen4, E. Chiaveri9, E. Chiaveri16, E. Chiaveri2, Nicola Colonna6, G. Cortes15, M. A. Cortés-Giraldo16, L. Cosentino, Sergio Cristallo6, L. A. Damone17, L. A. Damone6, M. Diakaki18, M. Diakaki2, M. Dietz19, C. Domingo-Pardo14, R. Dressler20, E. Dupont4, I. Duran13, Z. Eleme21, B. Fernández-Domínguez13, Alfredo Ferrari2, Paolo Finocchiaro, V. Furman22, K. Göbel23, A. Gawlik3, Simone Gilardoni2, T. Glodariu, I. F. Gonçalves24, E. González-Romero, Carlos Guerrero16, F. Gunsing4, Hideo Harada1, S. Heinitz20, J. Heyse, D. G. Jenkins11, F. Käppeler25, Y. Kadi2, Tatsuya Katabuchi26, Niko Kivel20, I. Knapova7, M. Kokkoris18, Y. Kopatch22, M. Krtička7, Deniz Kurtulgil23, I. Ladarescu14, Claudia Lederer-Woods19, J. Lerendegui-Marco16, S. Lo Meo27, S. Lo Meo6, S. J. Lonsdale19, D. Macina2, A. Manna28, A. Manna6, A. Masi2, Cristian Massimi6, Cristian Massimi28, P. F. Mastinu6, M. Mastromarco2, Francesca Matteucci6, Francesca Matteucci29, Emilio Andrea Maugeri20, Annamaria Mazzone6, Alberto Mengoni27, V. Michalopoulou18, P. M. Milazzo6, F. Mingrone2, A. Musumarra8, Alexandru Negret, Ralf Nolte30, F. Ogállar31, A. Oprea, N. Patronis21, A. Pavlik32, J. Perkowski3, L. Persanti6, Ignacio Porras31, Javier Praena31, J. M. Quesada16, D. Radeck30, D. Ramos-Doval4, Thomas Rauscher33, Thomas Rauscher34, Rene Reifarth23, Dimitri Rochman20, M. Sabaté-Gilarte2, M. Sabaté-Gilarte16, A. Saxena35, P. Schillebeeckx, D. Schumann20, S. Simone, A. G. Smith9, N. V. Sosnin9, A. Stamatopoulos18, G. Tagliente6, J. L. Tain14, T. Talip20, Ariel Tarifeño-Saldivia15, L. Tassan-Got4, L. Tassan-Got2, L. Tassan-Got18, A. Tsinganis2, J. Ulrich20, S. Urlass2, S. Urlass36, S. Valenta7, G. Vannini28, G. Vannini6, V. Variale6, P. Vaz24, Alberto Ventura6, Diego Vescovi6, V. Vlachoudis2, R. Vlastou18, Anton Wallner37, Philip Woods19, T. Wright9, Petar Žugec10 
TL;DR: In this article, the authors measured both neutron capture cross sections at the n_TOF Experimental Area 2 (EAR-2) with three C6 D6 detectors and also at Area 1 with the TAC.
Abstract: The neutron capture reactions of the $^{244}$Cm and $^{246}$Cm isotopes open the path for the formation of heavier Cm isotopes and heavier elements such as Bk and Cf in a nuclear reactor. In addition, both isotopes belong to the minor actinides with a large contribution to the decay heat and to the neutron emission in irradiated fuels. There are only two previous $^{244}$Cm and $^{246}$Cm capture cross section measurements: one in 1969 using a nuclear explosion [1] and the most recent data measured at J-PARC in 2010 [2]. The data for both isotopes are very scarce due to the difficulties in performing the measurements: high intrinsic activity of the samples and limited facilities capable of providing isotopically enriched samples.We have measured both neutron capture cross sections at the n_TOF Experimental Area 2 (EAR-2) with three C6 D6 detectors and also at Area 1 (EAR-1) with the TAC. Preliminary results assessing the quality and limitations (back-ground subtraction, measurement technique and counting statistics) of this new experimental datasets are presented and discussed.

3 citations


Journal ArticleDOI
TL;DR: In this paper, the 235 U(n,f) low-background and high-resolution experimental data obtained at the CERN-nTOF facility is combined with previous high resolution experimental data, in order to produce a very fine grid dataset with normalisation to the IAEA Reference file.
Abstract: 235 U neutron-induced fission cross-section is commonly used as reference for determining other isotope fission cross-section. However, below 150 keV this cross section is only included as Standard at the thermal point and recently its integral value between 7.8 eV and 11 eV [1]. The resolved resonance region, spanning up to 2.25 keV, has been reevaluated with high resolution in the last ENDF/B-VIII release [2] and a SAMMY resonance analysis was done by L. Leal et al. [3] including the CERN-nTOF experimental work of Paradela el al. [4] up to 10 keV, taken into account the IAEA Reference file.In this work the 235 U(n,f) low-background and high-resolution experimental data obtained at the CERN-nTOF facility is combined with previous high-resolution experimental data, in order to produce a very fine grid dataset with normalisation to the IAEA Reference file. The extremelyhigh energy calibration required to reproduce the resonance sharp profiles is based on the nTOF DAQ system with a resolution below 0.1% with reference to the 8.78 eV resonance and to the sharp Al(n,g) capture dip at 5.904 keV.The comparison of the so-evaluated profile with the experimental data and with the evaluated ones will be discussed.

2 citations


Journal ArticleDOI
C. Domingo-Pardo, V. Babiano-Suarez, J. Balibrea-Correa, Luis Caballero, I. Ladarescu, J. Lerendegui-Marco, J. L. Tain, F. Calviño, A. Casanovas, A. Segarra, Ariel Tarifeño-Saldivia, Carlos Guerrero, M. A. Millán-Callado, J. M. Quesada, M. T. Rodriguez-Gonzalez, O. Aberle, V. Alcayne, S. Amaducci, J. Andrzejewski, L. Audouin, M. Bacak, Mario Barbagallo, S. Bennett, E. Berthoumieux, Damir Bosnar, A. S. Brown, Maurizio Busso, M. Caamaño, Marco Calviani, D. Cano-Ott, F. Cerutti, E. Chiaveri, Nicola Colonna, G. Cortes, M. A. Cortés-Giraldo, L. Cosentino, Sergio Cristallo, L. A. Damone, P. J. Davies, M. Diakaki, M. Dietz, R. Dressler, Q. Ducasse, E. Dupont, I. Duran, Z. Eleme, B. Fernández-Domíngez, Alfredo Ferrari, I. Ferro-Gonçalves, Paolo Finocchiaro, V. Furman, R. Garg, A. Gawlik, Simone Gilardoni, K. Göbel, E. González-Romero, F. Gunsing, J. Heyse, D. G. Jenkins, E. Jericha, U. Jiri, Arnd R. Junghans, Y. Kadi, F. Käppeler, A. Kimura, I. Knapova, M. Kokkoris, Y. Kopatch, M. Krtička, Deniz Kurtulgil, Claudia Lederer-Woods, S. J. Lonsdale, D. Macina, A. Manna, T. Martinez, A. Masi, Cristian Massimi, P. F. Mastinu, M. Mastromarco, Emilio Andrea Maugeri, Annamaria Mazzone, E. Mendoza, Alberto Mengoni, V. Michalopoulou, P. M. Milazzo, F. Mingrone, J. Moreno-Soto, A. Musumarra, Alexandru Negret, F. Ogállar, A. Oprea, N. Patronis, A. Pavlik, J. Perkowski, C. Petrone, Luciano Piersanti, E. Pirovano, Ignacio Porras, Javier Praena, D. Ramos Doval, Rene Reifarth, Dimitri Rochman, C. Rubbia, M. Sabaté-Gilarte, A. Saxena, P. Schillebeeckx, D. Schumann, A. Sekhar, A. G. Smith, N. V. Sosnin, P. Sprung, A. Stamatopoulos, G. Tagliente, L. Tassan-Got, B. Thomas, P. Torres-Sánchez, A. Tsinganis, S. Urlass, S. Valenta, G. Vannini, V. Variale, P. Vaz, Alberto Ventura, Diego Vescovi, V. Vlachoudis, R. Vlastou, Anton Wallner, Philip Woods, T. Wright, P. Zugec 
TL;DR: In this article, a brief historical review focused on total energy detectors is presented to illustrate how advances in instrumentation have led, over the years, to the assessment and discovery of many new aspects of $s$-process nucleosynthesis and to the progressive refinement of theoretical models of stellar evolution.
Abstract: The idea of slow-neutron capture nucleosynthesis formulated in 1957 triggered a tremendous experimental effort in different laboratories worldwide to measure the relevant nuclear physics input quantities, namely ($n,\gamma$) cross sections over the stellar temperature range (from few eV up to several hundred keV) for most of the isotopes involved from Fe up to Bi. A brief historical review focused on total energy detectors will be presented to illustrate how, advances in instrumentation have led, over the years, to the assessment and discovery of many new aspects of $s$-process nucleosynthesis and to the progressive refinement of theoretical models of stellar evolution. A summary will be presented on current efforts to develop new detection concepts, such as the Total-Energy Detector with $\gamma$-ray imaging capability (i-TED). The latter is based on the simultaneous combination of Compton imaging with neutron time-of-flight (TOF) techniques, in order to achieve a superior level of sensitivity and selectivity in the measurement of stellar neutron capture rates.

2 citations


Journal ArticleDOI
J. Moreno-Soto1, E. Berthoumieux1, E. Dupont1, F. Gunsing1, O. Serot, O Litaize, M. Diakaki, A Chebboubi, W Dridi2, S. Valenta3, M. Krtiˇcka3, O. Aberle4, V. Alcayne, J. Andrzejewski5, L. Audouin1, V. Bécares, V. Babiano-Suarez6, M. Bacak4, M. Bacak7, M. Bacak1, Massimo Barbagallo4, Massimo Barbagallo8, Th. Benedikt9, S. Bennett10, J. Billowes10, D. Bosnar11, A. S. Brown12, Maurizio Busso13, Maurizio Busso8, M. Caamaño14, L. Caballero-Ontanaya6, F. Calviño15, Marco Calviani4, D. Cano-Ott, A. Casanovas15, F. Cerutti4, E. Chiaveri4, E. Chiaveri10, Nicola Colonna8, G. Cortes15, M. A. Cortés-Giraldo16, L. Cosentino, Sergio Cristallo8, L. A. Damone17, L. A. Damone8, P. J. Davies10, M. Dietz18, C. Domingo-Pardo6, Rugard Dressler19, Q. Ducasse20, I. Duran14, Z. Eleme21, B. Fernández-Domínguez14, Arnaud Ferrari4, Paolo Finocchiaro, V. Furman22, Kathrin Göbel9, A. Gawlik5, Simone Gilardoni4, I. F. Gonçalves23, E. González-Romero, Carlos Guerrero16, S. Heinitz19, Jan Heyse, D. G. Jenkins12, Arnd R. Junghans24, F. Käppeler25, Y. Kadi4, A. Kimura26, I. Knapova3, M. Kokkoris27, Y. Kopatch22, Deniz Kurtulgil9, I. Ladarescu6, Claudia Lederer-Woods18, S. J. Lonsdale18, D. Macina4, A. Manna8, A. Manna28, T. Martinez, A. Masi4, Cristian Massimi8, Cristian Massimi28, P. F. Mastinu8, M. Mastromarco4, Emilio Andrea Maugeri19, Annamaria Mazzone8, E. Mendoza, A. Mengoni29, V. Michalopoulou27, V. Michalopoulou4, P. M. Milazzo8, F. Mingrone4, A. Musumarra30, Alexandru Negret, F. Ogállar31, A. Oprea, N. Patronis21, A. Pavlik32, J. Perkowski5, L. Persanti8, C. Petrone, E. Pirovano20, Ignacio Porras31, Javier Praena31, J. M. Quesada16, D. Ramos-Doval1, Thomas Rauscher33, Thomas Rauscher34, Rene Reifarth9, Dimitri Rochman19, M. Sabaté-Gilarte16, M. Sabaté-Gilarte4, A. K. Saxena35, Peter Schillebeeckx, Dorothea Schumann19, A. Sekhar10, S. Simone, A. G. Smith10, N. V. Sosnin10, P. Sprung19, A. Stamatopoulos27, G. Tagliente8, J. L. Tain6, Ariel Tarifeño-Saldivia15, L. Tassan-Got27, L. Tassan-Got1, L. Tassan-Got4, A. Tsinganis4, J. Ulrich19, S. Urlass4, S. Urlass24, G. Vannini8, G. Vannini28, V. Variale8, P. Vaz23, Alberto Ventura8, Diego Vescovi8, Vasilis Vlachoudis4, R. Vlastou27, Anton Wallner36, P. J. Woods18, T. J. Wright10, Petar Žugec11 
TL;DR: In this paper, the gamma de-excitation cascades in radiative capture on 234 U with the Total Absorption Calorimeter at n_TOF at CERN are studied using the measurement of the gamma multiplicity and gamma spectra that can be compared with numerical simulations.
Abstract: The accurate calculations of neutron-induced reaction cross sections are relevant for many nuclear applications. The photon strength functions and nuclear level densities are essential inputs for such calculations. These quantities for 235 U are studied using the measurement of the gamma de-excitation cascades in radiative capture on 234 U with the Total Absorption Calorimeter at n_TOF at CERN. This segmented 4π gamma calorimeter is designed to detect gamma rays emitted from the nucleus with high efficiency. This experiment provides information on gamma multiplicity and gamma spectra that can be compared with numerical simulations. The code DICEBOXC is used to simulate the gamma cascades while GEANT4 is used for the simulation of the interaction of these gammas with the TAC materials. Available models and their parameters are being tested using the present data. Some preliminary results of this ongoing study are presented and discussed.

Journal ArticleDOI
L. Tassan-Got1, L. Tassan-Got2, L. Tassan-Got3, Nicola Colonna4, M. Diakaki2, Z. Eleme5, A. Manna4, A. Manna6, A. Sekhar7, A. Stamatopoulos2, O. Aberle3, V. Alcayne, S. Amaducci8, J. Andrzejewski9, L. Audouin, V. Babiano-Suarez10, M. Bacak1, M. Bacak11, M. Bacak3, Massimo Barbagallo4, Massimo Barbagallo3, S. Bennett7, E. Berthoumieux1, D. Bosnar12, A. S. Brown13, Maurizio Busso14, M. Caamaño15, L. Caballero10, Marco Calviani3, F. Calviño16, D. Cano-Ott, A. Casanovas16, F. Cerutti3, E. Chiaveri7, E. Chiaveri3, G. Cortes16, M. A. Cortés-Giraldo17, L. Cosentino, Sergio Cristallo, L. A. Damone18, L. A. Damone4, P. J. Davies7, M. Dietz19, C. Domingo-Pardo10, Rugard Dressler20, Q. Ducasse21, E. Dupont, I. Duran15, B. Fernández-Domíngez15, Arnaud Ferrari3, I. Ferro-Gonçalves22, Paolo Finocchiaro, V. Furman23, R. Garg19, A. Gawlik9, Simone Gilardoni3, Kathrin Göbel24, E. González-Romero, Carlos Guerrero17, F. Gunsing, S. Heinitz20, Jan Heyse, D. G. Jenkins13, U. Jiri20, Arnd R. Junghans25, Y. Kadi3, F. Käppeler26, A. Kimura27, I. Knapova28, M. Kokkoris2, Y. Kopatch23, M. Krticˇka28, Deniz Kurtulgil24, I. Ladarescu10, Claudia Lederer-Woods19, J. Lerendegui-Marco17, S. J. Lonsdale19, D. Macina3, T. Martinez, A. Masi3, Cristian Massimi4, Cristian Massimi6, P. F. Mastinu4, M. Mastromarco3, Emilio Andrea Maugeri20, Annamaria Mazzone4, E. Mendoza, A. Mengoni4, A. Mengoni29, V. Michalopoulou2, V. Michalopoulou3, P. M. Milazzo, M. A. Millán-Callado17, F. Mingrone3, J. Moreno-Soto, A. Musumarra8, Alexandru Negret, F. Ogállar30, A. Oprea, N. Patronis5, A. Pavlik31, J. Perkowski9, C. Petrone, Luciano Piersanti, E. Pirovano21, Ignacio Porras30, Javier Praena30, J. M. Quesada17, D. Ramos Doval, Rene Reifarth24, Dimitri Rochman20, C. Rubbia3, M. Sabaté-Gilarte17, M. Sabaté-Gilarte3, A. K. Saxena32, Peter Schillebeeckx, Dorothea Schumann20, A. G. Smith7, N. V. Sosnin7, P. Sprung20, G. Tagliente4, J. L. Tain10, Ariel Tarifeño-Saldivia16, B. Thomas24, P. Torres-Sánchez30, A. Tsinganis3, S. Urlass3, S. Urlass25, S. Valenta28, G. Vannini6, G. Vannini4, V. Variale4, P. Vaz22, Alberto Ventura4, Diego Vescovi, Vasilis Vlachoudis3, R. Vlastou2, Anton Wallner33, P. J. Woods19, T. J. Wright7, Petar Žugec12 
TL;DR: In this paper, a special effort was made on measurement of cross sections of actinides, exploiting the peculiarity of the n_TOF neutron beam which spans a huge energy domain, from the thermal region up to GeV.
Abstract: Since its start in 2001 the n_TOF collaboration developed a measurement program on fission, in view of advanced fuels in new generation reactors. A special effort was made on measurement of cross sections of actinides, exploiting the peculiarity of the n_TOF neutron beam which spans a huge energy domain, from the thermal region up to GeV. Moreover fission fragment angular distributions have also been measured. An overview of the cross section results achieved with different detectors is presented, including a discussion of the 237 Np case where discrepancies showed up between different detector systems. The results on the anisotropy of the fission fragments and its implication on the mechanism of neutron absorption, and in applications, are also shown.

Book ChapterDOI
Cristian Massimi1, O. Aberle2, V. Alcayne, J. Andrzejewski3, L. Audouin4, V. Bécares, V. Babiano-Suarez5, M. Bacak2, Massimo Barbagallo2, Th. Benedikt6, S. Bennett7, E. Berthoumieux4, J. Billowes7, D. Bosnar8, A. S. Brown9, Maurizio Busso1, M. Caamaño10, L. Caballero-Ontanaya5, F. Calviño11, Marco Calviani2, D. Cano-Ott, A. Casanovas11, D. M. Castelluccio1, F. Cerutti2, E. Chiaveri2, G. Clai1, Nicola Colonna1, G. Cortes11, M. A. Cortés-Giraldo12, L. Cosentino, Sergio Cristallo1, L. A. Damone1, P. J. Davies7, M. Dietz13, C. Domingo-Pardo5, Rugard Dressler14, Q. Ducasse15, E. Dupont4, I. Duran10, Z. Eleme16, B. Fernández-Domínguez10, Arnaud Ferrari2, Paolo Finocchiaro, V. Furman17, Kathrin Göbel6, A. Gawlik3, Simone Gilardoni2, I. F. Gonçalves18, E. González-Romero, Carlos Guerrero12, F. Gunsing4, S. Heinitz14, Jan Heyse, D. G. Jenkins9, Arnd R. Junghans19, F. Käppeler20, Y. Kadi2, A. Kimura21, I. Knapova22, M. Kokkoris23, Y. Kopatch17, M. Krtička22, Deniz Kurtulgil6, I. Ladarescu5, Claudia Lederer-Woods13, S. J. Lonsdale13, D. Macina2, A. Manna1, T. Martinez, A. Masi2, P. F. Mastinu1, M. Mastromarco2, Francesca Matteucci1, Emilio Andrea Maugeri14, Annamaria Mazzone1, E. Mendoza, Alberto Mengoni1, V. Michalopoulou2, P. M. Milazzo1, F. Mingrone2, J. Moreno-Soto4, A. Musumarra, Alexandru Negret, F. Ogállar24, A. Oprea, N. Patronis16, A. Pavlik25, J. Perkowski3, Luciano Piersanti1, C. Petrone, E. Pirovano15, Ignacio Porras24, Javier Praena24, J. M. Quesada12, D. Ramos-Doval4, Thomas Rauscher26, Rene Reifarth6, Dimitri Rochman14, M. Sabaté-Gilarte2, A. K. Saxena27, Peter Schillebeeckx, Dorothea Schumann14, A. Sekhar7, S. Simone, A. G. Smith7, N. V. Sosnin7, P. Sprung14, A. Stamatopoulos23, G. Tagliente1, J. L. Tain5, Ariel Tarifeño-Saldivia11, L. Tassan-Got2, A. Tsinganis2, J. Ulrich14, S. Urlass2, S. Valenta22, G. Vannini1, V. Variale1, P. Vaz18, Alberto Ventura1, Diego Vescovi1, Vasilis Vlachoudis2, R. Vlastou23, Anton Wallner28, Philip Woods13, T. J. Wright7, Petar Žugec8 
01 Aug 2019
TL;DR: A considerable amount of (n,\(\gamma \)) reactions has been studied, so far, at the neutron time-of-flight facility n_TOF at CERN as discussed by the authors, which aims at determining and improving cross sections for a number of isotopes relevant to s-process nucleosynthesis.
Abstract: A considerable amount of (n,\(\gamma \)) reactions has been studied, so far, at the neutron time-of-flight facility n_TOF at CERN. The experimental program aims at determining and improving cross sections for a number of isotopes relevant to s-process nucleosynthesis. A brief summary of some physical cases related to the s-process nucleosyntheis is presented in this work together with ongoing experiments and challenging future programs.

Book ChapterDOI
V. Alcayne, A. Kimura1, E. Mendoza, D. Cano-Ott, O. Aberle2, S. Amaducci, J. Andrzejewski3, L. Audouin4, V. Babiano-Suarez5, M. Bacak2, M. Bacak6, Massimo Barbagallo2, Massimo Barbagallo7, V. Bécares, F. Bečvář8, G. Bellia9, E. Berthoumieux, J. Billowes10, D. Bosnar11, A. S. Brown12, Maurizio Busso13, M. Caamaño14, Luis Caballero5, Marco Calviani2, F. Calviño15, A. Casanovas15, F. Cerutti2, Y. H. Chen4, E. Chiaveri10, E. Chiaveri2, Nicola Colonna7, G. Cortes15, M. A. Cortés-Giraldo5, L. Cosentino, Sergio Cristallo, L. A. Damone16, L. A. Damone7, M. Diakaki17, M. Dietz18, C. Domingo-Pardo5, Rugard Dressler19, E. Dupont, I. Duran14, Z. Eleme20, B. Fernández-Domíngez14, Arnaud Ferrari2, I. Ferro-Gon calves21, Paolo Finocchiaro, V. Furman22, A. Gawlik3, Simone Gilardoni2, T. Glodariu, Kathrin Göbel23, E. González-Romero, Carlos Guerrero5, F. Gunsing, S. Heinitz19, Jan Heyse, D. G. Jenkins12, Y. Kadi2, F. Käppeler24, Niko Kivel19, M. Kokkoris17, Y. Kopatch22, M. Krtička8, Deniz Kurtulgil23, I. Ladarescu5, Claudia Lederer-Woods18, J. Lerendegui-Marco5, S. Lo Meo25, S. Lo Meo7, S. J. Lonsdale18, D. Macina2, A. Manna7, A. Manna26, T. Martinez, A. Masi2, Cristian Massimi26, Cristian Massimi7, P. F. Mastinu7, M. Mastromarco2, Francesca Matteucci27, Emilio Andrea Maugeri19, Annamaria Mazzone7, A. Mengoni7, A. Mengoni25, V. Michalopoulou17, P. M. Milazzo, F. Mingrone2, A. Musumarra9, Alexandru Negret, Ralf Nolte28, F. Ogállar29, A. Oprea, N. Patronis20, A. Pavlik30, J. Perkowski3, Luciano Piersanti, Ignacio Porras29, Javier Praena29, J. M. Quesada5, D. Radeck28, D. Ramos Doval4, T. Rausher31, Rene Reifarth23, Dimitri Rochman19, C. Rubbia2, M. Sabaté-Gilarte5, M. Sabaté-Gilarte2, A. K. Saxena32, Peter Schillebeeckx, Dorothea Schumann19, A. G. Smith10, N. V. Sosnin10, A. Stamatopoulos17, G. Tagliente7, J. L. Tain5, Z. Talip19, Ariel Tarifeño-Saldivia15, L. Tassan-Got17, L. Tassan-Got4, L. Tassan-Got2, A. Tsinganis2, J. Ulrich19, S. Urlass33, S. Urlass2, S. Valenta8, G. Vannini26, G. Vannini7, V. Variale7, P. Vaz21, Alberto Ventura7, Vasilis Vlachoudis2, R. Vlastou17, Anton Wallner34, P. J. Woods18, T. J. Wright10, Petar Žugec11 
01 Jan 2019
TL;DR: In this paper, the authors measured the neutron capture cross section with isotopically enriched samples of Cm and Cm provided by JAEA, covering the range from 1 eV to 250 eV in the n_TOF Experimental Area 2 (EAR-2).
Abstract: The neutron capture reactions of the \(^{244}\)Cm and \(^{246}\)Cm isotopes open the path for the formation of heavier Cm isotopes and of heavier elements such as Bk and Cf in a nuclear reactor. In addition, both isotopes belong to the minor actinides with a large contribution to the decay heat and to the neutron emission in irradiated fuels proposed for the transmutation of nuclear waste and fast critical reactors. The available experimental data for both isotopes are very scarce. We measured the neutron capture cross section with isotopically enriched samples of \(^{244}\)Cm and \(^{246}\)Cm provided by JAEA. The measurement covers the range from 1 eV to 250 eV in the n_TOF Experimental Area 2 (EAR-2). In addition, a normalization measurement with the \(^{244}\)Cm sample was performed at Experimental Area 1 (EAR-1) with the Total Absorption Calorimeter (TAC).

Book ChapterDOI
01 Aug 2019
TL;DR: In this paper, an accurate measurement of Be(n,p) cross section has been performed at n TOF, with a pure Be target produced by implantation of a Be beam at ISOLDE.
Abstract: One of the most puzzling problems in Nuclear Astrophysics is the “Cosmological Lithium Problem”, i.e the discrepancy between the primordial abundance of Li observed in metal poor halo stars (Asplund et al. in Astrophys J 644:229–259, 2006, [1]), and the one predicted by Big Bang Nucleosynthesis (BBN). One of the reactions that could have an impact on the problem is Be(n,p) Li. Despite of the importance of this reaction in BBN, the cross-section has never been directly measured at the energies of interest for BBN. Taking advantage of the innovative features of the second experimental area at the n TOF facility at CERN (Sabate-Gilarte et al. in Eur Phys J A 53:210, 2017, [2]; Weiss et al. in NIMA 799:90, 2015, [3]), an accurate measurement of Be(n,p) cross section has been recently performed at n TOF, with a pure Be target produced by implantation of a Be beam at ISOLDE. The mesurement started in April 2016 and lasted for two months. The experimental procedure, the setup used in the measurement and the results obtained so far will be here presented.

Book ChapterDOI
V. Babiano-Suarez1, Luis Caballero1, C. Domingo-Pardo1, I. Ladarescu1, O. Aberle2, V. Alcayne, S. Amaducci, J. Andrzejewski3, L. Audouin4, M. Bacak2, M. Bacak5, Mario Barbagallo2, Mario Barbagallo6, V. Bécares, F. Bečvář7, G. Bellia8, E. Berthoumieux, J. Billowes9, Damir Bosnar10, A. S. Brown11, Maurizio Busso12, M. Caamaño13, Marco Calviani2, F. Calviño13, D. Cano-Ott, A. Casanovas13, F. Cerutti2, Y. H. Chen4, E. Chiaveri9, E. Chiaveri2, Nicola Colonna6, G. Cortes14, M. A. Cortés-Giraldo1, L. Cosentino, Sergio Cristallo, L. A. Damone6, L. A. Damone15, M. Diakaki16, M. Dietz17, R. Dressler18, E. Dupont, I. Duran13, Z. Eleme19, B. Fernández-Domíngez13, Alfredo Ferrari2, I. Ferro-Gon calves20, Paolo Finocchiaro, V. Furman21, A. Gawlik3, Simone Gilardoni2, T. Glodariu, K. Göbel22, E. González-Romero, Carlos Guerrero1, F. Gunsing, S. Heinitz18, J. Heyse, D. G. Jenkins11, Y. Kadi2, F. Käppeler23, A. Kimura24, Niko Kivel18, M. Kokkoris16, Y. Kopatch21, M. Krtička7, Deniz Kurtulgil22, Claudia Lederer-Woods17, J. Lerendegui-Marco1, S. Lo Meo25, S. Lo Meo6, S. J. Lonsdale17, D. Macina2, A. Manna26, A. Manna6, T. Martinez, A. Masi2, Cristian Massimi6, Cristian Massimi26, P. F. Mastinu6, M. Mastromarco2, Francesca Matteucci27, Emilio Andrea Maugeri18, Annamaria Mazzone6, E. Mendoza, Alberto Mengoni25, Alberto Mengoni6, V. Michalopoulou16, P. M. Milazzo, F. Mingrone2, A. Musumarra8, Alexandru Negret, Ralf Nolte28, F. Ogállar29, A. Oprea, N. Patronis19, A. Pavlik30, J. Perkowski3, Luciano Piersanti, Ignacio Porras29, Javier Praena29, J. M. Quesada1, D. Radeck28, D. Ramos Doval4, T. Rausher31, Rene Reifarth22, Dimitri Rochman18, C. Rubbia2, M. Sabaté-Gilarte32, M. Sabaté-Gilarte2, A. Saxena33, P. Schillebeeckx, D. Schumann18, A. G. Smith9, N. V. Sosnin9, A. Stamatopoulos16, G. Tagliente6, J. L. Tain1, Z. Talip18, Ariel Tarifeño-Saldivia14, L. Tassan-Got2, L. Tassan-Got16, L. Tassan-Got4, A. Tsinganis2, J. Ulrich18, S. Urlass2, S. Urlass34, S. Valenta7, G. Vannini26, G. Vannini6, V. Variale6, P. Vaz20, Alberto Ventura6, V. Vlachoudis2, R. Vlastou16, Anton Wallner35, P. J. Woods17, T. Wright9, Petar Žugec10 
01 Jan 2019
TL;DR: The i-TED detector as mentioned in this paper uses the Compton principle to select events produced in the sample and discard background events, which can be used to distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays generated in the surroundings of the setup.
Abstract: Neutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C 6 D 6 detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton principle to select events produced in the sample and discard background events. This involves using detectors capable of resolving the interaction position of the gamma ray inside the detector itself, as well as a high energy resolution. These are the main features of i-TED, a total energy detector capable of gamma ray imaging. Such system is being developed at the “Gamma Spectroscopy and Neutrons Group” at IFIC (http://webgamma.ific.uv.es/gamma/es/, [2]), in the framework of the ERC-funded project HYMNS (High sensitivitY and Measurements of key stellar Nucleo-Synthesis reactions). This work summarizes first tests with neutron beam at CERN n _ TOF.