scispace - formally typeset
Search or ask a question

Showing papers by "Nichola Johnson published in 2007"


Journal ArticleDOI
Douglas F. Easton1, Karen A. Pooley1, Alison M. Dunning1, Paul D.P. Pharoah1, Deborah J. Thompson1, Dennis G. Ballinger, Jeffery P. Struewing2, Jonathan J. Morrison1, Helen I. Field1, Robert Luben1, Nicholas J. Wareham1, Shahana Ahmed1, Catherine S. Healey1, Richard Bowman, Kerstin B. Meyer1, Christopher A. Haiman3, Laurence K. Kolonel, Brian E. Henderson3, Loic Le Marchand, Paul Brennan4, Suleeporn Sangrajrang, Valerie Gaborieau4, Fabrice Odefrey4, Chen-Yang Shen5, Pei-Ei Wu5, Hui-Chun Wang5, Diana Eccles6, D. Gareth Evans7, Julian Peto8, Olivia Fletcher9, Nichola Johnson9, Sheila Seal, Michael R. Stratton10, Nazneen Rahman, Georgia Chenevix-Trench11, Georgia Chenevix-Trench12, Stig E. Bojesen13, Børge G. Nordestgaard13, C K Axelsson13, Montserrat Garcia-Closas2, Louise A. Brinton2, Stephen J. Chanock2, Jolanta Lissowska14, Beata Peplonska15, Heli Nevanlinna16, Rainer Fagerholm16, H Eerola16, Daehee Kang17, Keun-Young Yoo17, Dong-Young Noh17, Sei Hyun Ahn18, David J. Hunter19, Susan E. Hankinson19, David G. Cox19, Per Hall20, Sara Wedrén20, Jianjun Liu21, Yen-Ling Low21, Natalia Bogdanova22, Peter Schu¨rmann22, Do¨rk Do¨rk22, Rob A. E. M. Tollenaar23, Catharina E. Jacobi23, Peter Devilee23, Jan G. M. Klijn24, Alice J. Sigurdson2, Michele M. Doody2, Bruce H. Alexander25, Jinghui Zhang2, Angela Cox26, Ian W. Brock26, Gordon MacPherson26, Malcolm W.R. Reed26, Fergus J. Couch27, Ellen L. Goode27, Janet E. Olson27, Hanne Meijers-Heijboer28, Hanne Meijers-Heijboer24, Ans M.W. van den Ouweland24, André G. Uitterlinden24, Fernando Rivadeneira24, Roger L. Milne29, Gloria Ribas29, Anna González-Neira29, Javier Benitez29, John L. Hopper30, Margaret R. E. McCredie31, Margaret R. E. McCredie11, Margaret R. E. McCredie32, Melissa C. Southey30, Melissa C. Southey11, Graham G. Giles33, Chris Schroen30, Christina Justenhoven34, Christina Justenhoven35, Hiltrud Brauch35, Hiltrud Brauch34, Ute Hamann36, Yon-Dschun Ko, Amanda B. Spurdle12, Jonathan Beesley12, Xiaoqing Chen12, _ kConFab37, Arto Mannermaa37, Veli-Matti Kosma37, Vesa Kataja37, Jaana M. Hartikainen37, Nicholas E. Day1, David Cox, Bruce A.J. Ponder1 
28 Jun 2007-Nature
TL;DR: To identify further susceptibility alleles, a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls was conducted, followed by a third stage in which 30 single nucleotide polymorphisms were tested for confirmation.
Abstract: Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2.0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P,1027). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P,0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach.

2,288 citations


Journal ArticleDOI
TL;DR: Investigating the effect of TP53 R72P and MDM2 SNP309 on breast cancer risk and age at onset of breast cancer in a pooled series of 5,191 cases and 3,834 controls found no association with breast cancer.
Abstract: Association studies in large series of breast cancer patients can be used to identify single-nucleotide polymorphisms (SNP) contributing to breast cancer susceptibility. Previous studies have suggested associations between variants in TP53 (R72P) and MDM2 (SNP309) and cancer risk. Data from molecular studies suggest a functional interaction between these genes. We therefore investigated the effect of TP53 R72P and MDM2 SNP309 on breast cancer risk and age at onset of breast cancer in a pooled series of 5,191 cases and 3,834 controls from the Breast Cancer Association Consortium (BCAC). Breast cancer risk was not found to be associated with the combined variant alleles [odds ratio (OR), 1.00; 95% confidence interval (95% CI), 0.81-1.23]. Estimated ORs were 1.01 (95% CI, 0.93-1.09) per MDM2 SNP309 allele and 0.98 (95% CI, 0.91-1.04) for TP53 R72P. Although we did find evidence for a 4-year earlier age at onset for carriers of both variant alleles in one of the breast cancer patient series of the BCAC (the German series), we were not able to confirm this effect in the pooled analysis. Even so, carriers of both variant alleles did not have different risk estimates for bilateral or estrogen receptor-positive breast cancer. In conclusion, in this large collaborative study, we did not find an association of MDM2 SNP309 and TP53 R72P, separately or in interaction, with breast cancer. This suggests that any effect of these two variants would be very small and possibly confined to subgroups that were not assessed in our present study.

81 citations


Journal ArticleDOI
TL;DR: In the version of this article initially published, there was an error that affected the calculations of the odds ratios, confidence intervals, between-study heterogeneity, trend test and test for association for SNP ICAM5 V301I as discussed by the authors.
Abstract: Nat. Genet. 39, 352–358 (2007); published online 11 February 2007; corrected 10 April 2007 In the version of this article initially published, there was an error that affected the calculations of the odds ratios, confidence intervals, between-study heterogeneity, trend test and test for association for SNP ICAM5 V301I in Table 1 (ICAM5 V301I); genotype counts in Supplementary Table 2 (ICAM5; ICR_FBCS and Kuopio studies) and minor allele frequencies, trend test and odds ratios for heterozygotes and rare homozygotes in Supplementary Table 3 (ICAM5; ICR_FBCS and Kuopio studies).

5 citations