scispace - formally typeset
Search or ask a question

Showing papers by "Yu-xi Liu published in 2008"


Journal ArticleDOI
Suyong Choi1, S. L. Olsen, I. Adachi, Hiroaki Aihara2, V. M. Aulchenko3, T. Aushev4, Tariq Aziz5, A. M. Bakich6, Vladislav Balagura, I. Bedny3, U. Bitenc, A. Bondar3, A. Bozek7, M. Bračko8, Jolanta Brodzicka, T. E. Browder, P. Chang9, Y. Chao9, A. Chen10, K. F. Chen9, W. T. Chen10, Byung Gu Cheon11, R. Chistov, Y. Choi12, J. Dalseno13, M. Danilov, M. Dash14, S. Eidelman3, N. Gabyshev3, B. Golob15, J. Haba, T. Hara16, K. Hayasaka17, H. Hayashii18, Masashi Hazumi, D. Heffernan16, Y. Hoshi19, W. S. Hou9, H. J. Hyun20, T. Iijima17, K. Inami17, A. Ishikawa21, Hirokazu Ishino22, R. Itoh, M. Iwasaki2, Y. Iwasaki, D. H. Kah20, J. H. Kang23, N. Katayama, H. Kawai24, T. Kawasaki25, H. Kichimi, H. O. Kim20, S. K. Kim26, Y. J. Kim27, K. Kinoshita28, P. Križan15, P. Krokovny, Rakesh Kumar29, C. C. Kuo10, A.S. Kuzmin3, Y. J. Kwon23, J. S. Lange30, Joowon Lee12, M. J. Lee26, S. E. Lee26, T. Lesiak7, Antonio Limosani13, S. W. Lin9, Yu-xi Liu27, D. Liventsev, F. Mandl31, A. Matyja7, S. McOnie6, Tatiana Medvedeva, W. A. Mitaroff31, K. Miyabayashi18, H. Miyake16, H. Miyata25, Y. Miyazaki17, R. Mizuk, G. R. Moloney13, E. Nakano32, M. Nakao, S. Nishida, O. Nitoh33, T. Nozaki, S. Ogawa34, T. Ohshima17, S. Okuno35, H. Ozaki, P. Pakhlov, G. Pakhlova, C. W. Park12, H. Park20, L. S. Peak6, R. Pestotnik, L. E. Piilonen14, H. Sahoo, Y. Sakai, O. Schneider4, A. J. Schwartz28, K. Senyo17, M. Shapkin, C. P. Shen, H. Shibuya34, B. Shwartz3, Jasvinder A. Singh29, A. Somov28, Samo Stanič36, M. Starič, T. Sumiyoshi37, S. Y. Suzuki, F. Takasaki, K. Tamai, M. Tanaka, Y. Teramoto32, I. Tikhomirov, S. Uehara, T. Uglov, Yoshinobu Unno11, S. Uno, Phillip Urquijo13, G. S. Varner, K. Vervink4, S. Villa4, C. H. Wang38, M. Z. Wang9, P. Wang, X. L. Wang, Y. Watanabe35, Robin Wedd13, E. Won39, Bruce Yabsley6, Y. Yamashita, C. Z. Yuan, Zhenyu Zhang40, Vladimir Zhulanov3, A. Zupanc, O. Zyukova3 
TL;DR: In this paper, the authors presented a method to detect the presence of a tumor in the human brain using the Web of Science Record created on 2010-11-05, modified on 2017-12-10.
Abstract: Reference EPFL-ARTICLE-154575doi:10.1103/PhysRevLett.100.142001View record in Web of Science Record created on 2010-11-05, modified on 2017-12-10

427 citations


Journal ArticleDOI
TL;DR: This study analyzes the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide.
Abstract: We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits.

397 citations


Journal ArticleDOI
R. Mizuk, R. Chistov, I. Adachi, Hiroaki Aihara1, K. Arinstein2, V. M. Aulchenko2, T. Aushev3, A. M. Bakich4, Vladislav Balagura, E. L. Barberio5, A. Bay3, V. Bhardwaj6, U. Bitenc, A. Bondar2, A. Bozek7, M. Bračko8, Jolanta Brodzicka, T. E. Browder, M. C. Chang9, P. Chang10, A. Chen11, K. F. Chen10, B. G. Cheon12, C. C. Chiang10, I. S. Cho13, S. K. Choi14, Y. Choi15, Jeremy Dalseno, M. Danilov, A. Drutskoy16, S. Eidelman2, D. Epifanov2, P. Goldenzweig16, B. Golob17, H. Ha18, J. Haba, K. Hayasaka19, H. Hayashii20, Masashi Hazumi, Y. Hoshi21, W. S. Hou10, Y. B. Hsiung10, H. J. Hyun22, T. Iijima19, K. Inami19, A. Ishikawa23, Hirokazu Ishino24, R. Itoh, M. Iwasaki1, Y. Iwasaki, D. H. Kah22, H. Kaji19, J. H. Kang13, T. Kawasaki25, H. Kichimi, H. J. Kim22, H. O. Kim22, Y. I. Kim22, Y. J. Kim26, K. Kinoshita16, Samo Korpar8, P. Križan17, P. Krokovny, Rakesh Kumar6, A.S. Kuzmin2, Y. J. Kwon13, Sunghyon Kyeong13, J. S. Lange27, Joowon Lee15, M. J. Lee28, S. W. Lin10, Chang Liu29, Yu-xi Liu26, D. Liventsev, F. Mandl30, S. McOnie4, K. Miyabayashi20, H. Miyata25, Y. Miyazaki19, E. Nakano31, M. Nakao, H. Nakazawa11, S. Nishida, O. Nitoh32, S. Ogawa33, T. Ohshima19, S. Okuno34, S. L. Olsen, H. Ozaki, P. Pakhlov, G. Pakhlova, H. Palka7, C. W. Park15, H. Park22, H. K. Park22, L. S. Peak4, R. Pestotnik, L. E. Piilonen35, Anton Poluektov2, H. Sahoo, Y. Sakai, O. Schneider3, A. J. Schwartz16, K. Senyo19, J. G. Shiu10, B. Shwartz2, Jasvinder A. Singh6, Andrey Sokolov, A. Somov16, Samo Stanič36, M. Starič, T. Sumiyoshi37, M. Tanaka, G. N. Taylor5, Y. Teramoto31, I. Tikhomirov, K. Trabelsi, S. Uehara, T. Uglov, Yoshinobu Unno12, S. Uno, Phillip Urquijo5, Yu. V. Usov2, G. S. Varner, Kevin Varvell4, K. Vervink3, C. H. Wang38, M. Z. Wang10, P. Wang, X. L. Wang, Y. Watanabe34, J. Wicht, E. Won18, Bruce Yabsley4, Y. Yamashita, C. C. Zhang, Zhenyu Zhang29, V.N. Zhilich2, Vladimir Zhulanov2, T. Zivko, A. Zupanc, O. Zyukova2 
TL;DR: In this paper, the authors presented a method to solve the PDE problem using the Web of Science Record created on 2010-11-05, modified on 2017-12-10.
Abstract: Reference EPFL-ARTICLE-154418doi:10.1103/PhysRevD.78.072004View record in Web of Science Record created on 2010-11-05, modified on 2017-12-10

217 citations


Journal ArticleDOI
Masahiro Fujikawa1, H. Hayashii1, S. Eidelman2, I. Adachi  +150 moreInstitutions (39)
TL;DR: In this paper, the authors presented a method to solve the PDE problem using the Web of Science Record created on 2010-11-05, modified on 2017-12-10.
Abstract: Reference EPFL-ARTICLE-154420doi:10.1103/PhysRevD.78.072006View record in Web of Science Record created on 2010-11-05, modified on 2017-12-10

173 citations


Journal ArticleDOI
TL;DR: In this article, the authors theoretically study a cavity filled with atoms, which provides the optical-mechanical interaction between the modified cavity photonic field and a oscillating mirror at one end.
Abstract: We theoretically study a cavity filled with atoms, which provides the optical-mechanical interaction between the modified cavity photonic field and a oscillating mirror at one end. We show that the cavity field "dresses" these atoms, producing two types of polaritons, effectively enhancing the radiation pressure of the cavity field upon the oscillating mirror, as well as establishing an additional squeezing mode of the oscillating mirror. This squeezing produces an adiabatic entanglement, which is absent in usual vacuum cavities, between the oscillating mirror and the rest of the system. We analyze the entanglement and quantify it using the Loschmidt echo and fidelity.

170 citations


Journal ArticleDOI
P. Pakhlov, I. Adachi, H. Aihara1, K. Arinstein2, T. Aushev3, Tariq Aziz4, A. M. Bakich5, Vladislav Balagura, E. L. Barberio6, I. Bedny2, K. Belous, V. Bhardwaj7, U. Bitenc, A. Bondar2, A. Bozek8, M. Bračko9, T. E. Browder, Y. Chao10, A. Chen11, K. F. Chen10, W. T. Chen11, Byung Gu Cheon12, R. Chistov, Y. Choi13, J. Dalseno6, M. Danilov, M. Dash14, A. Drutskoy15, S. Eidelman2, B. Golob16, H. Ha17, K. Hayasaka18, Masashi Hazumi, D. Heffernan19, Y. Hoshi20, W. S. Hou10, Y. B. Hsiung10, H. J. Hyun21, T. Iijima18, K. Ikado18, K. Inami18, A. Ishikawa22, Hirokazu Ishino23, R. Itoh, Motoki Iwasaki1, Y. Iwasaki, D. H. Kah21, J. H. Kang24, P. Kapusta8, N. Katayama, H. Kawai25, T. Kawasaki26, H. Kichimi, Y. J. Kim27, K. Kinoshita15, S. Korpar9, Peter Krizan16, P. Krokovny, Rakesh Kumar7, C. C. Kuo11, Y. J. Kwon24, J. S. Lange28, M. J. Lee29, S. E. Lee29, T. Lesiak8, Antonio Limosani6, S. W. Lin10, Yu-xi Liu27, D. Liventsev, F. Mandl30, A. Matyja8, Tatiana Medvedeva, H. Miyake19, H. Miyata26, Y. Miyazaki18, R. Mizuk, G. R. Moloney6, T. Mori18, E. Nakano31, M. Nakao, Z. Natkaniec8, S. Nishida, O. Nitoh32, S. Noguchi33, S. Ogawa34, T. Ohshima18, S. Okuno35, S. L. Olsen, H. Ozaki, G. Pakhlova, H. Palka8, C. W. Park13, L. S. Peak5, R. Pestotnik, L. E. Piilonen14, H. Sahoo, Y. Sakai, O. Schneider3, R. Seidl36, K. Senyo18, M. E. Sevior6, M. Shapkin, C. P. Shen, H. Shibuya34, J. G. Shiu10, J. B. Singh7, A. Somov15, Samo Stanič37, M. Starič, T. Sumiyoshi38, S. Suzuki22, F. Takasaki, K. Tamai, N. Tamura26, M. Tanaka, G. N. Taylor6, Y. Teramoto31, I. Tikhomirov, S. Uehara, K. Ueno10, T. Uglov, Y. Unno12, S. Uno, Phillip Urquijo6, Yu. V. Usov2, G. S. Varner, K. Vervink3, C. H. Wang39, P. Wang, X. L. Wang, Y. Watanabe35, E. Won17, Bruce Yabsley5, Y. Yamashita, M. Yamauchi, C. Z. Yuan, C. C. Zhang, Z. P. Zhang40, V.N. Zhilich2, A. Zupanc, O. Zyukova2 
TL;DR: In this article, the processes e+e-→J/ψD(*)D*D* were studied and a new charmonium-like state X(4160) was observed.
Abstract: We report a study of the processes e+e-→J/ψD(*)D(*). In J/ψD*D* we observe a significant enhancement in the D*D* invariant mass spectrum, which we interpret as a new charmoniumlike state and denote X(4160). The X(4160) parameters are M=(4156-20+25±15)MeV/c2 and Γ=(139-61+111±21)MeV. We also report a new measurement of the X(3940) mass and width: M=(3942-6+7±6) MeV/c2 and Γ=(37-15+26±8)MeV. The analysis is based on a 693fb-1 data sample recorded near the Υ(4S) resonance by the Belle detector at the KEKB asymmetric-energy collider. © 2008 The American Physical Society.

156 citations


Journal ArticleDOI
K. F. Chen1, W. S. Hou1, M. Shapkin, Andrey Sokolov  +147 moreInstitutions (38)
TL;DR: In this article, the authors presented a method to detect the presence of a tumor in the human brain using the Web of Science Record created on 2010-11-05, modified on 2017-12-10.
Abstract: Reference EPFL-ARTICLE-154550doi:10.1103/PhysRevLett.100.112001View record in Web of Science Record created on 2010-11-05, modified on 2017-12-10

150 citations


Journal ArticleDOI
TL;DR: In this paper, the authors studied single-photon transport in an array of coupled microcavities where two two-level atomic systems are embedded in two separate cavities of the array.
Abstract: We study single-photon transport in an array of coupled microcavities where two two-level atomic systems are embedded in two separate cavities of the array. We find that a single photon can be totally reflected by a single two-level system. However, two separate two-level systems can also create, between them, single-photon quasibound states. Therefore, a single two-level system in the cavity array can act as a mirror while a different type of cavity can be formed by using two two-level systems, acting as tunable "mirrors," inside two separate cavities in the array. In analogy with superlattices in solid state physics, we call this "cavity inside a coupled-cavity array" a supercavity. This supercavity is the quantum analog of Fabry-Perot interferometers. Moreover, we show that the physical properties of this quantum supercavity can be adjusted by changing the frequencies of these two-level systems.

136 citations


Journal ArticleDOI
S. W. Lin1, Yoshinobu Unno2, W. S. Hou1, P. Chang1  +183 moreInstitutions (43)
20 Mar 2008-Nature
TL;DR: It is reported that the direct CP violation in charged B±→K±π0 decay is different from that in the neutral B0 counterpart, which could be an indication of new sources of CP violation—which would help to explain the dominance of matter in the Universe.
Abstract: Equal amounts of matter and antimatter are predicted to have been produced in the Big Bang, but our observable Universe is clearly matter-dominated. One of the prerequisites for understanding this elimination of antimatter is the nonconservation of charge-parity (CP) symmetry. So far, two types of CP violation have been observed in the neutral K meson (K(0)) and B meson (B(0)) systems: CP violation involving the mixing between K(0) and its antiparticle (and likewise for B(0) and ), and direct CP violation in the decay of each meson. The observed effects for both types of CP violation are substantially larger for the B(0) meson system. However, they are still consistent with the standard model of particle physics, which has a unique source of CP violation that is known to be too small to account for the matter-dominated Universe. Here we report that the direct CP violation in charged B(+/-)-->K(+/-)pi(0) decay is different from that in the neutral B(0) counterpart. The direct CP-violating decay rate asymmetry, (that is, the difference between the number of observed B(-)-->K(-)pi(0) event versus B(+)-->K(+) pi(0) events, normalized to the sum of these events) is measured to be about +7%, with an uncertainty that is reduced by a factor of 1.7 from a previous measurement. However, the asymmetry for versus B(0)-->K(+)pi(-) is at the -10% level. Although it is susceptible to strong interaction effects that need further clarification, this large deviation in direct CP violation between charged and neutral B meson decays could be an indication of new sources of CP violation-which would help to explain the dominance of matter in the Universe.

90 citations


Journal ArticleDOI
G. Pakhlova, I. Adachi, Hiroaki Aihara1, K. Arinstein2, V. M. Aulchenko2, T. Aushev3, A. M. Bakich4, Vladislav Balagura, A. Bay3, I. Bedny2, U. Bitenc, A. Bondar2, A. Bozek5, M. Bračko6, Jolanta Brodzicka, T. E. Browder7, P. Chang8, A. Chen9, W. T. Chen9, B. G. Cheon10, R. Chistov, S. K. Choi11, Y. Choi12, J. Dalseno13, M. Danilov, A. Drutskoy14, S. Eidelman2, D. Epifanov2, N. Gabyshev2, B. Golob15, K. Hayasaka16, H. Hayashii17, D. Heffernan18, Y. Hoshi19, W. S. Hou8, H. J. Hyun20, Toru Iijima16, K. Inami16, A. Ishikawa21, Hirokazu Ishino22, R. Itoh, Y. Iwasaki, D. H. Kah20, Ju Hwan Kang23, N. Katayama, H. Kawai24, T. Kawasaki25, A. Kibayashi, H. Kichimi, H. O. Kim20, S. K. Kim26, Y. J. Kim27, K. Kinoshita14, S. Korpar6, P. Krokovny, Rakesh Kumar28, C. C. Kuo9, A.S. Kuzmin2, Youngjoon Kwon23, J. S. Lange29, Joowon Lee12, M. J. Lee26, T. Lesiak5, Antonio Limosani13, S. W. Lin8, Yu-xi Liu27, D. Liventsev, F. Mandl30, A. Matyja5, S. McOnie4, Tatiana Medvedeva, W. A. Mitaroff30, K. Miyabayashi17, H. Miyata25, Y. Miyazaki16, R. Mizuk, G. R. Moloney13, S. Nishida, O. Nitoh31, T. Nozaki, S. Ogawa32, Takayoshi Ohshima16, S. Okuno33, Stephen L. Olsen7, H. Ozaki, P. Pakhlov, C. W. Park12, L. S. Peak4, R. Pestotnik, L. E. Piilonen34, Anton Poluektov2, H. Sahoo7, Y. Sakai, O. Schneider3, A. J. Schwartz14, R. Seidl35, K. Senyo16, M. Shapkin, V.E. Shebalin2, H. Shibuya32, J. G. Shiu8, B. Shwartz2, Jasvinder A. Singh28, Andrey Sokolov, A. Somov14, Samo Stanič36, M. Starič, T. Sumiyoshi37, S. Y. Suzuki, F. Takasaki, K. Tamai, Y. Teramoto38, I. Tikhomirov, Sadaharu Uehara, K. Ueno8, T. Uglov, Yoshinobu Unno10, S. Uno, Yu. V. Usov2, G. S. Varner7, K. Vervink, S. Villa3, A. Vinokurova2, C. H. Wang39, P. Wang, X. L. Wang, Y. Watanabe33, Bruce Yabsley4, C. Z. Yuan, Y. Yusa34, Zhenyu Zhang40, V.N. Zhilich2, Vladimir Zhulanov2, A. Zupanc, O. Zyukova2 
TL;DR: In this article, the exclusive cross section for e+e-→DD, where D=D0 or D+, in the center-of-mass energy range from the DD threshold to 5 GeV with initial-state radiation, was analyzed.
Abstract: We report measurements of the exclusive cross section for e+e-→DD, where D=D0 or D+, in the center-of-mass energy range from the DD threshold to 5 GeV with initial-state radiation. The analysis is based on a data sample collected with the Belle detector with an integrated luminosity of 673fb-1. © 2008 The American Physical Society.

83 citations


Journal ArticleDOI
M. Starič, I. Adachi, Hiroaki Aihara1, K. Arinstein2, T. Aushev3, A. M. Bakich4, E. L. Barberio5, A. Bay3, I. Bedny2, K. Belous, V. Bhardwaj6, U. Bitenc, A. Bondar2, A. Bozek7, M. Bračko8, Jolanta Brodzicka, T. E. Browder, P. Chang9, Y. Chao9, A. Chen10, K. F. Chen9, B. G. Cheon11, R. Chistov, I. S. Cho12, Y. Choi13, Jeremy Dalseno, M. Dash14, W. Dungel15, S. Eidelman2, S. Fratina, N. Gabyshev2, B. Golob16, H. Ha17, J. Haba, T. Hara18, Yoji Hasegawa19, K. Hayasaka20, H. Hayashii21, Masashi Hazumi, D. Heffernan18, Y. Hoshi22, W. S. Hou9, H. J. Hyun23, K. Inami20, A. Ishikawa24, Hirokazu Ishino25, R. Itoh, M. Iwasaki1, D. H. Kah23, H. Kaji20, T. Kawasaki26, H. Kichimi, H. J. Kim23, H. O. Kim23, S. K. Kim27, Y. I. Kim23, Y. J. Kim28, K. Kinoshita29, S. Korpar8, P. Križan16, P. Krokovny, Rakesh Kumar6, A.S. Kuzmin2, Y. J. Kwon12, S. H. Kyeong12, J. S. Lange30, M. J. Lee27, S. E. Lee27, T. Lesiak7, Antonio Limosani5, Chang Liu31, Yu-xi Liu28, D. Liventsev, F. Mandl15, A. Matyja7, S. McOnie4, K. Miyabayashi21, H. Miyata26, Y. Miyazaki20, G. R. Moloney5, T. Mori20, Tadashi Nagamine32, Yasushi Nagasaka33, E. Nakano34, M. Nakao, H. Nakazawa10, Z. Natkaniec7, S. Nishida, O. Nitoh35, T. Nozaki, T. Ohshima20, S. Okuno36, H. Ozaki, P. Pakhlov, G. Pakhlova, H. Palka7, C. W. Park13, H. Park23, H. K. Park23, L. S. Peak4, R. Pestotnik, L. E. Piilonen14, Anton Poluektov2, H. Sahoo, Y. Sakai, O. Schneider3, J. Schümann, C. Schwanda15, A. J. Schwartz29, A. Sekiya21, K. Senyo20, M. E. Sevior5, M. Shapkin, J. G. Shiu9, B. Shwartz2, Jasvinder A. Singh6, Andrey Sokolov, A. Somov29, Samo Stanič37, T. Sumiyoshi38, F. Takasaki, M. Tanaka, G. N. Taylor5, Y. Teramoto34, K. Trabelsi, T. Tsuboyama, S. Uehara, T. Uglov, Yoshinobu Unno11, S. Uno, Phillip Urquijo5, Yu. V. Usov2, G. S. Varner, K. Vervink3, C. H. Wang39, P. Wang, X. L. Wang, Y. Watanabe36, E. Won17, Bruce Yabsley4, Y. Yamashita, C. Z. Yuan, C. C. Zhang, Zhenyu Zhang31, V.N. Zhilich2, T. Zivko, A. Zupanc, O. Zyukova2 
TL;DR: In this paper, the authors measured the CP-violating asymmetries in decays to the D0 → K+ K- and D 0 → π+ π- CP eigenstates using 540 fb-1 of data collected with the Belle detector at or near the Υ{hooked} (4 S) resonance.

Journal ArticleDOI
Sadaharu Uehara, Y. Watanabe1, I. Adachi, Hiroaki Aihara2, K. Arinstein3, A. M. Bakich4, Vladislav Balagura, E. L. Barberio5, A. Bay6, I. Bedny3, K. Belous, V. Bhardwaj7, U. Bitenc, A. Bondar3, M. Bračko8, T. E. Browder, M. C. Chang9, A. Chen10, Kai-Feng Chen11, W. T. Chen10, B. G. Cheon12, I. S. Cho13, Y. Choi14, Jeremy Dalseno, M. Dash15, A. Drutskoy16, S. Eidelman3, D. Epifanov3, B. Golob17, H. Ha18, J. Haba, K. Hayasaka19, H. Hayashii20, Y. Hoshi21, W. S. Hou11, H. J. Hyun22, Toru Iijima19, K. Inami19, A. Ishikawa23, R. Itoh, M. Iwasaki2, Y. Iwasaki, D. H. Kah22, H. Kaji19, J. H. Kang13, N. Katayama, H. Kawai24, T. Kawasaki25, H. Kichimi, H. J. Kim22, Y. I. Kim22, Y. J. Kim26, Samo Korpar8, P. Križan17, P. Krokovny, Rakesh Kumar7, A.S. Kuzmin3, Y. J. Kwon13, Sunghyon Kyeong13, J. S. Lange27, Joowon Lee14, S. E. Lee28, Antonio Limosani5, S. W. Lin11, Chang Liu29, Yu-xi Liu26, D. Liventsev, F. Mandl30, S. McOnie4, K. Miyabayashi20, Y. Miyazaki19, T. Mori19, Yasushi Nagasaka31, I. Nakamura, E. Nakano32, M. Nakao, H. Nakazawa10, Z. Natkaniec33, S. Nishida, O. Nitoh34, S. Ogawa35, T. Ohshima19, S. Okuno1, Stephen L. Olsen, H. Ozaki, P. Pakhlov, G. Pakhlova, H. Palka33, C. W. Park14, H. Park22, H. K. Park22, K. S. Park14, L. S. Peak4, L. E. Piilonen15, H. Sahoo, Y. Sakai, O. Schneider6, K. Senyo19, M. E. Sevior5, M. Shapkin, C. P. Shen, J. G. Shiu11, B. Shwartz3, Jasvinder A. Singh7, Andrey Sokolov, Samo Stanič36, M. Starič, T. Sumiyoshi37, S. Y. Suzuki, G. N. Taylor5, Y. Teramoto32, I. Tikhomirov, T. Uglov, Yoshinobu Unno12, S. Uno, Phillip Urquijo5, Yu. V. Usov3, G. S. Varner, Chunjie Wang38, P. Wang, X. L. Wang, Robin Wedd5, E. Won18, Y. Yamashita, Y. Yusa15, Zhenyu Zhang29, V.N. Zhilich3, Vladimir Zhulanov3, T. Zivko, A. Zupanc, O. Zyukova3 
TL;DR: In this paper, the authors presented a method to detect the presence of a tumor in the human brain using PhysRevD data, which was created on 2010-11-05, modified on 2017-12-10
Abstract: Reference EPFL-ARTICLE-154391doi:10.1103/PhysRevD.78.052004View record in Web of Science Record created on 2010-11-05, modified on 2017-12-10

Journal ArticleDOI
TL;DR: An approach for cooling both an artificial atom and its neighboring quantum system, the latter modeled by either a quantum two-level system or a quantum resonator, which is robust and effective, irrespective of the chosen quantum systems connected to the qubit.
Abstract: We propose an approach for cooling both an artificial atom (e.g., a flux qubit) and its neighboring quantum system, the latter modeled by either a quantum two-level system or a quantum resonator. The flux qubit is cooled by manipulating its states, following an inverse process of state population inversion, and then the qubit is switched on to resonantly interact with the neighboring quantum system. By repeating these steps, the two subsystems can be simultaneously cooled. Our results show that this cooling is robust and effective, irrespective of the chosen quantum systems connected to the qubit.

Journal ArticleDOI
Y. Miyazaki1, I. Adachi, Hiroaki Aihara2, K. Arinstein3, V. M. Aulchenko3, T. Aushev4, A. M. Bakich5, Vladislav Balagura, E. L. Barberio6, A. Bay4, U. Bitenc, A. Bondar3, A. Bozek7, M. Bračko8, T. E. Browder, A. Chen9, K. F. Chen10, W. T. Chen9, B. G. Cheon11, R. Chistov, I. S. Cho12, Y. Choi13, M. Dash14, A. Drutskoy15, S. Eidelman3, D. Epifanov3, N. Gabyshev3, H. Ha16, J. Haba, Kazuhiko Hara1, K. Hayasaka1, H. Hayashii17, Masashi Hazumi, D. Heffernan18, Y. Hoshi19, W. S. Hou10, Y. B. Hsiung10, H. J. Hyun20, Toru Iijima1, K. Inami1, A. Ishikawa21, R. Itoh, M. Iwasaki2, Y. Iwasaki, D. H. Kah20, H. Kaji1, P. Kapusta7, H. Kawai22, T. Kawasaki23, H. Kichimi, H. J. Kim20, Y. J. Kim24, K. Kinoshita15, Y. Kozakai1, P. Križan25, P. Krokovny, Rakesh Kumar26, C. C. Kuo9, A.S. Kuzmin3, Youngil Kwon12, Joowon Lee13, M. J. Lee27, S. E. Lee27, S. W. Lin10, Yu-xi Liu24, D. Liventsev, F. Mandl28, S. McOnie5, W. A. Mitaroff28, H. Miyake18, H. Miyata23, R. Mizuk, D. Mohapatra14, G. R. Moloney6, T. Mori1, T. Nagamine29, E. Nakano30, M. Nakao, H. Nakazawa9, Z. Natkaniec7, S. Nishida, O. Nitoh31, S. Noguchi17, S. Ogawa32, Takayoshi Ohshima1, S. Okuno33, S. L. Olsen, H. Ozaki, P. Pakhlov, G. Pakhlova, C. W. Park13, H. Park20, K. S. Park13, R. Pestotnik, L. E. Piilonen14, Anton Poluektov3, Y. Sakai, O. Schneider4, A. J. Schwartz15, K. Senyo1, M. E. Sevior6, M. Shapkin, H. Shibuya32, J. G. Shiu10, B. Shwartz3, Andrey Sokolov, A. Somov15, Samo Stanič34, M. Starič, T. Sumiyoshi35, F. Takasaki, N. Tamura23, M. Tanaka, G. N. Taylor6, Y. Teramoto30, I. Tikhomirov, S. Uehara, K. Ueno10, Yoshinobu Unno11, S. Uno, Phillip Urquijo6, Yu. V. Usov3, G. S. Varner, S. Villa4, A. Vinokurova3, C. H. Wang36, P. Wang, X. L. Wang, Y. Watanabe33, E. Won16, Y. Yamashita, Zhenyu Zhang37, V.N. Zhilich3, A. Zupanc, O. Zyukova3 
TL;DR: In this article, the authors search for lepton flavor violating τ decays into three leptons (electron or muon) using 535 fb −1 of data collected with the Belle detector at the KEKB asymmetric-energy e + e − collider.

Journal ArticleDOI
J. T. Wei1, M. Z. Wang1, I. Adachi, H. Aihara2, V. M. Aulchenko3, T. Aushev4, A. M. Bakich5, Vladislav Balagura, E. L. Barberio6, A. Bay4, K. Belous, U. Bitenc, A. Bondar3, A. Bozek7, M. Bračko8, T. E. Browder, P. Chang1, Y. Chao1, A. Chen9, K. F. Chen1, B. G. Cheon10, C. C. Chiang1, I. S. Cho11, Y. Choi12, Young-Il Choi12, S. Cole5, M. Danilov, M. Dash13, A. Drutskoy14, S. Eidelman3, S. Fratina, N. Gabyshev3, B. Golob15, H. Ha16, J. Haba, T. Hara17, K. Hayasaka18, H. Hayashii19, Masashi Hazumi, D. Heffernan17, T. Hokuue18, Y. Hoshi20, Y. B. Hsiung1, H. J. Hyun21, T. Iijima18, K. Ikado18, K. Inami18, A. Ishikawa2, R. Itoh, Motoki Iwasaki2, Y. Iwasaki, D. H. Kah21, J. H. Kang11, N. Katayama, H. Kawai22, T. Kawasaki23, H. Kichimi, Y. J. Kim24, K. Kinoshita14, S. Korpar8, P. Križan15, P. Krokovny, Rakesh Kumar25, C. C. Kuo9, A. Kuzmin3, Y. J. Kwon11, Joowon Lee12, S. E. Lee26, T. Lesiak7, S. W. Lin1, Yu-xi Liu24, D. Liventsev, F. Mandl27, T. Matsumoto28, A. Matyja7, S. McOnie5, Tatiana Medvedeva, W. A. Mitaroff27, K. Miyabayashi19, H. Miyake17, H. Miyata23, Y. Miyazaki18, R. Mizuk, Yasushi Nagasaka29, E. Nakano30, M. Nakao, S. Nishida, O. Nitoh31, S. Ogawa32, T. Ohshima18, S. Okuno33, S. L. Olsen, H. Ozaki, P. Pakhlov, G. Pakhlova, C. W. Park12, H. Park21, K. S. Park12, R. Pestotnik, L. E. Piilonen13, H. Sahoo, Y. Sakai, O. Schneider4, J. Schümann, R. Seidl34, K. Senyo18, M. E. Sevior6, M. Shapkin, H. Shibuya32, J. G. Shiu1, J. B. Singh25, Andrey Sokolov, A. Somov14, Samo Stanič35, M. Starič, T. Sumiyoshi28, Osamu Tajima, F. Takasaki, K. Tamai, M. Tanaka, G. N. Taylor6, Y. Teramoto30, X. C. Tian36, I. Tikhomirov, T. Tsuboyama, S. Uehara, K. Ueno1, T. Uglov, Y. Unno10, S. Uno, Phillip Urquijo6, G. S. Varner, Kevin Varvell5, K. Vervink4, S. Villa4, A. Vinokurova3, C. C. Wang1, C. H. Wang37, P. Wang, Y. Watanabe33, Robin Wedd6, E. Won16, A. Yamaguchi38, Y. Yamashita, M. Yamauchi, C. C. Zhang, Z. P. Zhang39, V.N. Zhilich3, A. Zupanc 
TL;DR: In this paper, the characteristics of the low mass p (p) over bar enhancements near threshold in the three-body decays B+ -> p(p)) over bar K(+) and B+ → p(P) over k(+) were studied.

Journal ArticleDOI
D. Liventsev, I. Adachi, Hiroaki Aihara1, K. Arinstein2, T. Aushev3, A. M. Bakich4, Vladislav Balagura, E. L. Barberio5, A. Bay3, U. Bitenc, A. Bondar2, A. Bozek6, M. Bračko7, Jolanta Brodzicka, T. E. Browder, P. Chang8, Y. Chao8, A. Chen9, K. F. Chen8, W. T. Chen9, B. G. Cheon10, R. Chistov, I. S. Cho11, Y. Choi12, S. Cole4, J. Dalseno5, M. Danilov, M. Dash13, A. Drutskoy14, S. Eidelman2, D. Epifanov2, N. Gabyshev2, B. Golob15, H. Ha16, J. Haba, K. Hayasaka17, H. Hayashii18, Masashi Hazumi, D. Heffernan19, Y. Hoshi20, W. S. Hou8, Y. B. Hsiung8, H. J. Hyun21, T. Iijima17, K. Inami17, A. Ishikawa22, Hirokazu Ishino23, R. Itoh, M. Iwasaki1, Y. Iwasaki, D. H. Kah21, J. H. Kang11, P. Kapusta6, H. Kawai24, T. Kawasaki25, H. Kichimi, H. J. Kim21, Y. J. Kim26, K. Kinoshita14, S. Korpar7, P. Križan15, P. Krokovny, Rakesh Kumar27, C. C. Kuo9, A.S. Kuzmin2, Y. J. Kwon11, Joowon Lee12, M. J. Lee28, S. E. Lee28, T. Lesiak6, Antonio Limosani5, S. W. Lin8, Yu-xi Liu26, F. Mandl29, S. McOnie4, Tatiana Medvedeva, H. Miyake19, H. Miyata25, Y. Miyazaki17, R. Mizuk, D. Mohapatra13, G. R. Moloney5, E. Nakano30, M. Nakao, H. Nakazawa9, Z. Natkaniec6, S. Nishida, O. Nitoh31, T. Nozaki, S. Ogawa32, T. Ohshima17, S. Okuno33, S. L. Olsen, H. Ozaki, P. Pakhlov, G. Pakhlova, C. W. Park12, H. Park21, K. S. Park12, R. Pestotnik, L. E. Piilonen13, Y. Sakai, O. Schneider3, C. Schwanda29, K. Senyo17, M. Shapkin, H. Shibuya32, J. G. Shiu8, B. Shwartz2, Andrey Sokolov, A. Somov14, Samo Stanič34, M. Starič, T. Sumiyoshi35, S. Suzuki22, F. Takasaki, M. Tanaka, G. N. Taylor5, Y. Teramoto30, I. Tikhomirov, S. Uehara, K. Ueno8, T. Uglov, Yoshinobu Unno10, S. Uno, Phillip Urquijo5, Yu. V. Usov2, G. S. Varner, K. Vervink3, S. Villa3, A. Vinokurova2, C. C. Wang8, C. H. Wang36, M. Z. Wang8, P. Wang, X. L. Wang, Y. Watanabe33, E. Won16, Y. Yamashita, Zhenyu Zhang37, V.N. Zhilich2, A. Zupanc, O. Zyukova2 
TL;DR: In this paper, the authors presented a method to solve the PDE problem using the Web of Science Record created on 2010-11-05, modified on 2017-12-10.
Abstract: Reference EPFL-ARTICLE-154437doi:10.1103/PhysRevD.77.091503View record in Web of Science Record created on 2010-11-05, modified on 2017-12-10

Journal ArticleDOI
J. Wicht1, I. Adachi, H. Aihara2, K. Arinstein3, V. M. Aulchenko3, T. Aushev1, A. M. Bakich4, Vladislav Balagura, A. Bay1, K. Belous, V. Bhardwaj5, U. Bitenc, A. Bondar3, A. Bozek6, M. Bračko7, T. E. Browder, P. Chang8, Y. Chao8, A. Chen9, K. F. Chen8, W. T. Chen9, B. G. Cheon10, R. Chistov, I. S. Cho11, Y. Choi12, J. Dalseno13, M. Dash14, A. Drutskoy15, S. Eidelman3, N. Gabyshev3, P. Goldenzweig15, B. Golob16, J. Haba, K. Hayasaka17, Masashi Hazumi, D. Heffernan18, Y. Hoshi19, W. S. Hou8, Y. B. Hsiung8, H. J. Hyun20, T. Iijima17, K. Inami17, A. Ishikawa21, Hirokazu Ishino22, R. Itoh, Y. Iwasaki, D. H. Kah20, H. Kaji17, J. H. Kang11, P. Kapusta6, H. Kawai23, T. Kawasaki24, H. Kichimi, H. J. Kim20, H. O. Kim20, S. K. Kim25, Y. J. Kim26, K. Kinoshita15, S. Korpar7, Peter Krizan16, Rakesh Kumar5, C. C. Kuo9, Y. J. Kwon11, J. S. Lange27, J. S. H. Lee25, Joowon Lee12, S. E. Lee25, T. Lesiak6, Antonio Limosani13, S. W. Lin8, Yu-xi Liu26, D. Liventsev, F. Mandl28, S. McOnie4, Tatiana Medvedeva, W. A. Mitaroff28, K. Miyabayashi29, H. Miyake18, H. Miyata24, Y. Miyazaki17, R. Mizuk, D. Mohapatra14, G. R. Moloney13, M. Nakao, Z. Natkaniec6, S. Nishida, O. Nitoh30, T. Nozaki, S. Ogawa31, T. Ohshima17, S. Okuno32, H. Ozaki, P. Pakhlov, G. Pakhlova, H. Palka6, C. W. Park12, H. Park20, K. S. Park12, R. Pestotnik, L. E. Piilonen14, Y. Sakai, O. Schneider1, J. Schümann, A. J. Schwartz15, K. Senyo17, M. E. Sevior13, M. Shapkin, H. Shibuya31, J. G. Shiu8, B. Shwartz3, J. B. Singh5, A. Somov15, Samo Stanič33, M. Starič, K. Sumisawa, T. Sumiyoshi34, F. Takasaki, K. Tamai, M. Tanaka, G. N. Taylor13, Y. Teramoto35, K. Trabelsi, T. Tsuboyama, S. Uehara, K. Ueno8, Y. Unno10, S. Uno, Y. Ushiroda, Yu. V. Usov3, G. S. Varner, K. Vervink1, S. Villa1, C. H. Wang36, P. Wang, X. L. Wang, Y. Watanabe32, E. Won37, Bruce Yabsley4, Y. Yamashita, M. Yamauchi, Y. Yusa14, Z. P. Zhang38, V.N. Zhilich3, A. Zupanc, N. Zwahlen1 
TL;DR: In this paper, the authors presented a method to detect the presence of a tumor in the human brain using the Web of Science Record created on 2010-11-05, modified on 2017-05-12.
Abstract: Reference EPFL-ARTICLE-154561doi:10.1103/PhysRevLett.100.121801View record in Web of Science Record created on 2010-11-05, modified on 2017-05-12

Journal ArticleDOI
Akito Kusaka1, C. C. Wang2, I. Adachi, H. Aihara1, K. Arinstein3, V. M. Aulchenko3, T. Aushev4, A. M. Bakich5, Vladislav Balagura, E. L. Barberio6, I. Bedny3, K. Belous, U. Bitenc, A. Bondar3, A. Bozek7, M. Bračko8, T. E. Browder, P. Chang2, Y. Chao2, A. Chen9, W. T. Chen9, B. G. Cheon10, R. Chistov, I. S. Cho11, S. K. Choi12, Y. Choi13, J. Dalseno6, M. Dash14, S. Eidelman3, N. Gabyshev3, B. Golob15, J. Haba, Kazuhiko Hara16, K. Hayasaka16, H. Hayashii17, Masashi Hazumi, D. Heffernan18, Y. Hoshi19, W. S. Hou2, H. J. Hyun20, T. Iijima16, K. Inami16, A. Ishikawa21, Hirokazu Ishino22, R. Itoh, Motoki Iwasaki1, Y. Iwasaki, D. H. Kah20, J. H. Kang11, H. Kawai23, T. Kawasaki24, H. Kichimi, H. O. Kim20, S. K. Kim25, Y. J. Kim26, K. Kinoshita27, S. Korpar8, P. Križan15, P. Krokovny, Rakesh Kumar28, C. C. Kuo9, A. Kuzmin3, Y. J. Kwon11, Joowon Lee13, M. J. Lee25, S. E. Lee25, T. Lesiak7, Antonio Limosani6, S. W. Lin2, Yu-xi Liu26, D. Liventsev, F. Mandl29, A. Matyja7, S. McOnie5, Tatiana Medvedeva, K. Miyabayashi17, H. Miyake18, H. Miyata24, Y. Miyazaki16, R. Mizuk, G. R. Moloney6, E. Nakano30, M. Nakao, S. Nishida, O. Nitoh31, S. Noguchi17, T. Nozaki, S. Ogawa32, T. Ohshima16, S. Okuno33, H. Ozaki, G. Pakhlova, C. W. Park13, H. Park20, L. S. Peak5, R. Pestotnik, L. E. Piilonen14, H. Sahoo, Y. Sakai, O. Schneider4, C. Schwanda29, A. J. Schwartz27, K. Senyo16, M. E. Sevior6, M. Shapkin, C. P. Shen, H. Shibuya32, B. Shwartz3, J. B. Singh28, A. Somov27, Samo Stanič34, M. Starič, T. Sumiyoshi35, S. Suzuki21, S. Y. Suzuki, F. Takasaki, K. Tamai, N. Tamura24, M. Tanaka, Y. Teramoto30, I. Tikhomirov, K. Trabelsi, S. Uehara, K. Ueno2, T. Uglov, Y. Unno10, S. Uno, Phillip Urquijo6, G. S. Varner, Kevin Varvell5, K. Vervink4, S. Villa4, C. H. Wang36, M. Z. Wang2, P. Wang, X. L. Wang, Y. Watanabe33, E. Won37, Y. Yamashita, Z. P. Zhang38, Vladimir Zhulanov3, A. Zupanc, O. Zyukova3 
TL;DR: In this paper, the authors presented a method to detect the presence of a tumor in the human brain using PhysRevD data, which was created on 2010-11-05, modified on 2017-05-12.
Abstract: Reference EPFL-ARTICLE-154414doi:10.1103/PhysRevD.77.072001View record in Web of Science Record created on 2010-11-05, modified on 2017-05-12

Journal ArticleDOI
TL;DR: An efficient purification protocol in solid-state qubits is shown by replacing the usual bilateral controlled-NOT gate by the bilateral $\mathrm{iSWAP}$ gate, which reduces the number of fragile and cumbersome two-qubit operations, making more feasible quantum-information processing with solid- state qubits.
Abstract: We show an efficient purification protocol in solid-state qubits by replacing the usual bilateral controlled-NOT gate by the bilateral $\mathrm{iSWAP}$ gate. We also show that this replacement can be applied to breeding and hashing protocols, which are useful for quantum state purification. These replacements reduce the number of fragile and cumbersome two-qubit operations, making more feasible quantum-information processing with solid-state qubits. As examples, we also present quantitative analyses for the required time to perform state purification using either superconducting or semiconducting qubits.

Journal ArticleDOI
N. Taniguchi1, M. Nakao, S. Nishida, I. Adachi  +149 moreInstitutions (43)
TL;DR: In this paper, the authors presented a method to solve the problem of the lack of an EKG-based EKF-based data acquisition system in PhysRevLett.
Abstract: Reference EPFL-ARTICLE-154547doi:10.1103/PhysRevLett.101.111801View record in Web of Science Record created on 2010-11-05, modified on 2017-12-10

Journal ArticleDOI
Vladislav Balagura, I. Adachi, Hiroaki Aihara1, K. Arinstein2, V. M. Aulchenko2, T. Aushev3, A. M. Bakich4, E. L. Barberio5, A. Bay3, K. Belous, V. Bhardwaj6, U. Bitenc, A. Bondar2, A. Bozek7, M. Bračko8, Jolanta Brodzicka, T. E. Browder, M. C. Chang9, Y. Chao10, A. Chen11, W. T. Chen11, B. G. Cheon12, R. Chistov, I. S. Cho13, Y. Choi14, J. Dalseno5, M. Danilov, A. Drutskoy15, S. Eidelman2, D. Epifanov2, N. Gabyshev2, A. Garmash16, B. Golob17, H. Ha18, J. Haba, T. Hara19, N. C. Hastings1, K. Hayasaka20, H. Hayashii21, Masashi Hazumi, D. Heffernan19, Y. Hoshi22, W. S. Hou10, H. J. Hyun23, K. Inami20, A. Ishikawa24, Hirokazu Ishino25, R. Itoh, M. Iwasaki1, Y. Iwasaki, D. H. Kah23, H. Kaji20, N. Katayama, H. Kawai26, T. Kawasaki27, H. Kichimi, H. J. Kim23, Ho Kim14, Y. J. Kim28, K. Kinoshita15, S. Korpar8, P. Križan17, P. Krokovny, C. C. Kuo11, A.S. Kuzmin2, Y. J. Kwon13, J. S. Lange29, M. J. Lee30, S. E. Lee30, T. Lesiak7, Antonio Limosani5, S. W. Lin10, Yu-xi Liu28, D. Liventsev, F. Mandl31, S. McOnie4, Tatiana Medvedeva, W. A. Mitaroff31, H. Miyake19, H. Miyata27, Y. Miyazaki20, R. Mizuk, D. Mohapatra32, G. R. Moloney5, Yasushi Nagasaka33, E. Nakano34, M. Nakao, H. Nakazawa11, Z. Natkaniec7, S. Nishida, O. Nitoh35, S. Ogawa36, T. Ohshima20, S. Okuno37, S. L. Olsen, W. Ostrowicz7, H. Ozaki, P. Pakhlov, G. Pakhlova, H. Palka7, C. W. Park14, L. S. Peak4, R. Pestotnik, L. E. Piilonen32, Y. Sakai, O. Schneider3, K. Senyo20, M. Shapkin, C. P. Shen, H. Shibuya36, J. G. Shiu10, A. Somov15, Samo Stanič38, M. Starič, T. Sumiyoshi39, K. Tamai, M. Tanaka, G. N. Taylor5, Y. Teramoto34, I. Tikhomirov, S. Uehara, K. Ueno10, T. Uglov, Yoshinobu Unno12, S. Uno, Phillip Urquijo5, Yu. V. Usov2, G. S. Varner, K. Vervink3, S. Villa3, A. Vinokurova2, C. C. Wang10, C. H. Wang40, M. Z. Wang10, P. Wang, X. L. Wang, Y. Watanabe37, E. Won18, Bruce Yabsley4, A. Yamaguchi41, Y. Yamashita, M. Yamauchi, Zhenyu Zhang42, V.N. Zhilich2, Vladimir Zhulanov2, A. Zupanc, O. Zyukova2 
TL;DR: In this paper, the first observation of the decay of Ds1(2536)+→D+π-K+K 0 was made using 462fb-1 of e+e- annihilation data recorded by the Belle detector.
Abstract: Using 462fb-1 of e+e- annihilation data recorded by the Belle detector, we report the first observation of the decay Ds1(2536)+→D+π-K+. The ratio of branching fractions B(Ds1(2536)+→D+π-K+)B(Ds1(2536) +→D*+K0) is measured to be (3.27±0.18±0.37)%. We also study the angular distributions in the Ds1(2536)+→D*+KS0 decay and measure the ratio of D- and S-wave amplitudes. The S-wave dominates, with a partial width of ΓS/Γtotal=0.72±0.05±0.01. © 2008 The American Physical Society.

Journal ArticleDOI
J. Li, I. Adachi, K. Arinstein1, T. Aushev2, A. M. Bakich3, Vladislav Balagura, I. Bedny1, V. Bhardwaj4, U. Bitenc, A. Bozek5, M. Bračko6, T. E. Browder, P. Chang7, Y. Chao7, A. Chen8, B. G. Cheon9, R. Chistov, Y. Choi10, J. Dalseno, A. Drutskoy11, S. Eidelman1, N. Gabyshev1, H. Ha12, Kazuhiko Hara13, Yoji Hasegawa14, H. Hayashii15, Masashi Hazumi, D. Heffernan16, Y. Hoshi17, W. S. Hou7, H. J. Hyun18, T. Iijima13, A. Ishikawa19, R. Itoh, Motoki Iwasaki20, Y. Iwasaki, N. J. Joshi21, D. H. Kah18, J. H. Kang, H. Kawai22, T. Kawasaki23, H. Kichimi, Y. I. Kim18, Y. J. Kim24, K. Kinoshita11, S. Korpar6, P. Križan25, P. Krokovny, Rakesh Kumar4, A. Kuzmin1, S. H. Kyeong26, C. Liu27, Yu-xi Liu24, A. Matyja5, S. McOnie3, Tatiana Medvedeva, K. Miyabayashi15, H. Miyake16, H. Miyata23, G. R. Moloney28, Yasushi Nagasaka29, M. Nakao, Z. Natkaniec5, S. Nishida, O. Nitoh30, S. Ogawa31, T. Ohshima13, S. Okuno32, S. L. Olsen, H. Ozaki, G. Pakhlova, C. W. Park10, H. Park18, H. K. Park18, K. S. Park10, L. S. Peak3, R. Pestotnik, L. E. Piilonen33, H. Sahoo, Y. Sakai, O. Schneider2, C. Schwanda34, A. Sekiya15, K. Senyo13, M. Shapkin, J. G. Shiu7, B. Shwartz1, Andrey Sokolov, A. Somov11, Samo Stanič35, M. Starič, T. Sumiyoshi36, M. Tanaka, G. N. Taylor28, Y. Teramoto37, I. Tikhomirov, K. Trabelsi, T. Tsuboyama, S. Uehara, T. Uglov, Y. Unno9, S. Uno, Phillip Urquijo28, Y. Ushiroda, Yu. V. Usov1, G. S. Varner, Kevin Varvell3, K. Vervink2, A. Vinokurova1, C. H. Wang38, P. Wang, X. L. Wang, Y. Watanabe32, E. Won, Bruce Yabsley3, H. Yamamoto39, Y. Yamashita, M. Yamauchi, Z. P. Zhang27, V.N. Zhilich1, T. Zivko, A. Zupanc, O. Zyukova1 
TL;DR: The first measurement of time-dependent CP asymmetry in B0→KS0ρ0γ decays based on 657×106 BB pairs collected with the Belle detector at the KEKB asymmetric-energy collider is reported.
Abstract: We report the first measurement of time-dependent CP asymmetry in B0→KS0ρ0γ decays based on 657×106 BB pairs collected with the Belle detector at the KEKB asymmetric-energy collider. We measure the CP-violating parameter SKS0ρ0γ=0.11±0.33(stat)-0.09+0.05(syst) from a signal of 212±17 events. We also obtain the effective direct CP-violating parameter Aeff=0.05±0.18(stat)±0.06(syst) for mKS0π+π-<1.8GeV/c2 and 0.6GeV/c2

Journal ArticleDOI
S. E. Lee1, K. Miyabayashi2, Hiroaki Aihara3, T. Aushev4, Tariq Aziz5, A. M. Bakich6, Vladislav Balagura, E. L. Barberio7, A. Bay4, K. Belous, V. Bhardwaj8, U. Bitenc, S. Blyth9, A. Bondar10, A. Bozek11, M. Bračko12, T. E. Browder, P. Chang13, A. Chen14, K. F. Chen13, Byung Gu Cheon15, R. Chistov, I. S. Cho16, S. K. Choi17, Y. Choi18, J. Dalseno7, M. Dash19, S. Eidelman10, D. Epifanov10, N. Gabyshev10, H. Ha20, J. Haba, Kazuhiko Hara21, T. Hara22, H. Hayashii2, Masashi Hazumi, D. Heffernan22, T. Higuchi, Y. Hoshi23, W. S. Hou13, H. J. Hyun24, T. Iijima21, K. Inami21, A. Ishikawa25, Hirokazu Ishino26, R. Itoh, M. Iwasaki3, D. H. Kah24, J. H. Kang16, S. U. Kataoka2, H. Kawai27, T. Kawasaki28, H. J. Kim24, S. K. Kim1, Y. J. Kim29, K. Kinoshita30, S. Korpar12, P. Križan31, Rakesh Kumar8, C. C. Kuo14, A.S. Kuzmin10, Y. J. Kwon16, Joowon Lee18, M. J. Lee1, T. Lesiak11, S. W. Lin13, Yu-xi Liu29, D. Liventsev, S. McOnie6, Tatiana Medvedeva, W. A. Mitaroff32, H. Miyata28, R. Mizuk, T. Mori21, E. Nakano33, M. Nakao, H. Nakazawa14, Z. Natkaniec11, S. Nishida, O. Nitoh34, S. Noguchi2, T. Nozaki, S. Ogawa35, T. Ohshima21, S. Okuno36, S. L. Olsen, H. Ozaki, P. Pakhlov, G. Pakhlova, H. Park24, K. S. Park18, R. Pestotnik, L. E. Piilonen19, H. Sahoo, Y. Sakai, O. Schneider4, A. J. Schwartz30, A. Sekiya2, K. Senyo21, M. Shapkin, C. P. Shen, H. Shibuya35, S. Shinomiya22, J. G. Shiu13, B. Shwartz10, J. B. Singh8, Andrey Sokolov, A. Somov30, Samo Stanič37, M. Starič, K. Sumisawa, T. Sumiyoshi38, S. Suzuki25, Osamu Tajima, F. Takasaki, K. Tamai, M. Tanaka, G. N. Taylor7, Y. Teramoto33, I. Tikhomirov, K. Trabelsi, S. Uehara, K. Ueno13, T. Uglov, Yoshinobu Unno15, S. Uno, Phillip Urquijo7, Y. Ushiroda, Yu. V. Usov10, G. S. Varner, Kevin Varvell6, S. Villa4, C. C. Wang13, C. H. Wang9, P. Wang, X. L. Wang, Y. Watanabe36, E. Won20, A. Yamaguchi39, Y. Yamashita, M. Yamauchi, C. Z. Yuan, Y. Yusa19, C. C. Zhang, Zhenyu Zhang40, V.N. Zhilich10, Vladimir Zhulanov10, A. Zupanc 
TL;DR: In this article, the authors presented a method to detect the presence of a tumor in the human brain using PhysRevD data and showed that the tumor can be identified using Web of Science Record (WRSR).
Abstract: Reference EPFL-ARTICLE-154406doi:10.1103/PhysRevD.77.071101View record in Web of Science Record created on 2010-11-05, modified on 2017-12-10

Journal ArticleDOI
Sadaharu Uehara, I. Adachi, Hiroaki Aihara1, V. M. Aulchenko2  +155 moreInstitutions (49)
TL;DR: In this article, measurements of charmonia produced in two-photon collisions and decaying to four-meson final states, where the meson is either a charged pion or a charged kaon, were reported.
Abstract: We report measurements of charmonia produced in two-photon collisions and decaying to four-meson final states, where the meson is either a charged pion or a charged kaon. The analysis is based on a 395 fb-1 data sample accumulated with the Belle detector at the KEKB electron–positron collider. We observe signals for the three C-even charmonia ηc(1S), χc0(1P) and χc2(1P) in the π+π-π+π-, K+K-π+π- and K+K-K+K- decay modes. No clear signals for ηc(2S) production are found in these decay modes. We have also studied resonant structures in charmonium decays to two-body intermediate meson resonances. We report the products of the two-photon decay width and the branching fractions, \(\Gamma_{\gamma\gamma}\mathcal{B}\), for each of the charmonium decay modes.

Journal ArticleDOI
P. Goldenzweig1, A. J. Schwartz1, I. Adachi, Hiroaki Aihara2  +148 moreInstitutions (40)
TL;DR: In this article, the authors present the results of a study of the charmless vector-vector decay B-0 -> omega K*(0) with 657 X 10(6) B (B) over bar pairs collected with the Belle detector at the KEKB e(+)e(-) collider.
Abstract: We present the results of a study of the charmless vector-vector decay B-0 -> omega K*(0) with 657 X 10(6) B (B) over bar pairs collected with the Belle detector at the KEKB e(+)e(-) collider. We measure the branching fraction to be B(B-0 -> omega K*(0)) = [1.8 +/- 0.7(stat) +/- 0.3(syst)] X 10(-6) with 3.0 sigma significance. We also perform a helicity analysis of the omega and K*(0) vector mesons, and obtain the longitudinal polarization fraction f(L)(B-0 -> omega K*(0)) = 0.56 +/- 0.29(stat)(-0.08)(+0.18)(syst). Finally, we measure a large nonresonant branching fraction B[B-0 -> omega K+ pi(-); M-K pi is an element of (0.755, 1.250) GeV/c(2)] = [5.1 +/- 0.7(stat) +/- 0.7(syst)] X 10(-6) with a significance of 9.5 sigma.

Journal ArticleDOI
K. Arinstein1, I. Adachi, Hiroaki Aihara2, V. M. Aulchenko1  +154 moreInstitutions (40)
TL;DR: In this article, the authors present a Web of Science Record created on 2010-11-05, modified on 2017-05-12.Reference EPFL-ARTICLE-154489

Journal ArticleDOI
V. Bhardwaj1, Rakesh Kumar1, Jasvinder A. Singh1, I. Adachi, Hiroaki Aihara2, K. Arinstein3, T. Aushev4, Tariq Aziz5, S. Bahinipati6, A. M. Bakich7, Vladislav Balagura, E. L. Barberio8, A. Bay4, K. Belous, U. Bitenc, A. Bondar3, A. Bozek9, M. Bračko10, Jolanta Brodzicka, T. E. Browder, M. C. Chang11, P. Chang12, A. Chen13, B. G. Cheon14, R. Chistov, I. S. Cho15, S. K. Choi16, Y. Choi17, Jeremy Dalseno, M. Dash18, A. Drutskoy6, S. Eidelman3, P. Goldenzweig6, B. Golob19, H. Ha20, T. Hara21, K. Hayasaka22, H. Hayashii23, Masashi Hazumi, Y. Hoshi24, W. S. Hou12, Y. B. Hsiung12, H. J. Hyun25, T. Iijima22, K. Inami22, A. Ishikawa26, Hirokazu Ishino27, R. Itoh, M. Iwasaki2, Y. Iwasaki, N. J. Joshi5, D. H. Kah25, J. H. Kang15, N. Katayama, H. Kawai28, T. Kawasaki29, H. Kichimi, H. O. Kim25, S. K. Kim30, Y. I. Kim25, Y. J. Kim31, K. Kinoshita6, S. Korpar10, P. Križan19, P. Krokovny, A.S. Kuzmin3, Y. J. Kwon15, S. H. Kyeong15, J. S. Lange32, Joowon Lee17, S. W. Lin12, Chang Liu33, Yu-xi Liu31, D. Liventsev, F. Mandl34, A. Matyja9, S. McOnie7, Tatiana Medvedeva, K. Miyabayashi23, H. Miyata29, Y. Miyazaki22, R. Mizuk, G. R. Moloney8, Yasushi Nagasaka35, M. Nakao, Z. Natkaniec9, S. Nishida, O. Nitoh36, S. Ogawa37, T. Ohshima22, S. Okuno38, S. L. Olsen, H. Ozaki, P. Pakhlov, G. Pakhlova, C. W. Park17, H. Park25, H. K. Park25, L. S. Peak7, R. Pestotnik, L. E. Piilonen18, H. Sahoo, Y. Sakai, O. Schneider4, J. Schümann, C. Schwanda34, A. J. Schwartz6, K. Senyo22, M. E. Sevior8, M. Shapkin, C. P. Shen, J. G. Shiu12, B. Shwartz3, A. Somov6, Samo Stanič39, M. Starič, T. Sumiyoshi40, S. Suzuki26, N. Tamura29, M. Tanaka, G. N. Taylor8, Y. Teramoto41, K. Trabelsi, S. Uehara, T. Uglov, Yoshinobu Unno14, S. Uno, Phillip Urquijo8, G. S. Varner, Kevin Varvell7, K. Vervink4, C. C. Wang12, C. H. Wang42, M. Z. Wang12, P. Wang, X. L. Wang, Y. Watanabe38, E. Won20, Y. Yamashita, M. Yamauchi, C. C. Zhang, Vladimir Zhulanov3, T. Zivko, A. Zupanc, O. Zyukova3 
TL;DR: In this paper, the first observation of B±→ψ(2S)π±, a Cabibbo-and color-suppressed decay, was reported based on 657×106 BB events collected at the Υ(4S) resonance with the Belle detector at the KEKB energy-asymmetric e+e-collider.
Abstract: We report the first observation of B±→ψ(2S)π±, a Cabibbo- and color-suppressed decay. This analysis is based on 657×106 BB events collected at the Υ(4S) resonance with the Belle detector at the KEKB energy-asymmetric e+e- collider. The measured branching fraction is (2.44±0.22±0.20)×10-5 and the charge asymmetry is A=0.022±0.085±0.016. The ratio of the branching fractions B(B±→ψ(2S)π±)/B(B±→ψ(2S)K±)=(3. 99±0.36±0.17)% is also determined. © 2008 The American Physical Society.

Journal ArticleDOI
M. Iwabuchi1, M. Nakao, I. Adachi, K. Arinstein2, V. M. Aulchenko2, T. Aushev3, A. M. Bakich4, Vladislav Balagura, E. L. Barberio5, A. Bay3, K. Belous, V. Bhardwaj6, U. Bitenc, A. Bozek7, M. Bračko8, T. E. Browder, A. Chen9, W. T. Chen9, B. G. Cheon10, I. S. Cho11, Y. Choi12, Jeremy Dalseno, M. Dash13, A. Drutskoy14, S. Eidelman2, Masahiro Fujikawa15, N. Gabyshev2, H. Ha16, J. Haba, K. Hayasaka17, Masashi Hazumi, D. Heffernan18, Yasuyuki Horii19, Y. Hoshi20, W. S. Hou21, H. J. Hyun22, K. Inami17, A. Ishikawa23, Hirokazu Ishino24, R. Itoh, M. Iwasaki25, D. H. Kah22, H. Kaji17, J. H. Kang11, H. Kawai26, T. Kawasaki27, H. Kichimi, H. J. Kim22, H. O. Kim22, Y. I. Kim22, Y. J. Kim1, K. Kinoshita14, S. Korpar8, P. Križan28, P. Krokovny, Rakesh Kumar6, C. C. Kuo9, Y. J. Kwon11, Joowon Lee12, M. J. Lee29, S. E. Lee29, T. Lesiak7, Antonio Limosani5, S. W. Lin21, Chang Liu30, Yu-xi Liu1, D. Liventsev, F. Mandl31, A. Matyja7, S. McOnie4, Tatiana Medvedeva, K. Miyabayashi15, H. Miyake18, H. Miyata27, Y. Miyazaki17, G. R. Moloney5, H. Nakazawa9, Z. Natkaniec7, S. Nishida, O. Nitoh32, S. Ogawa33, T. Ohshima17, S. Okuno34, H. Ozaki, P. Pakhlov, G. Pakhlova, C. W. Park12, H. K. Park22, K. S. Park12, L. S. Peak4, R. Pestotnik, L. E. Piilonen13, H. Sahoo, Y. Sakai, O. Schneider3, J. Schümann, C. Schwanda31, A. Sekiya15, K. Senyo17, M. Shapkin, H. Shibuya33, J. G. Shiu21, B. Shwartz2, Samo Stanič35, M. Starič, K. Sumisawa, T. Sumiyoshi36, S. Suzuki23, M. Tanaka, Y. Teramoto37, I. Tikhomirov, K. Trabelsi, Y. Uchida1, S. Uehara, T. Uglov, Yoshinobu Unno10, S. Uno, Phillip Urquijo5, Yu. V. Usov2, G. S. Varner, Kevin Varvell4, K. Vervink3, C. C. Wang21, C. H. Wang38, M. Z. Wang21, P. Wang, X. L. Wang, Y. Watanabe34, J. Wicht3, E. Won16, Y. Yamashita, Zhenyu Zhang30, V.N. Zhilich2, Vladimir Zhulanov2, A. Zupanc 
TL;DR: A search for the doubly Cabibbo suppressed decay B+-->D*+pi0 is reported on, based on a data sample of 657x10(6) BB pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider.
Abstract: We report on a search for the doubly Cabibbo suppressed decay B+→D*+π0, based on a data sample of 657×106 BB pairs collected at the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. We find no significant signal and set an upper limit of B(B+→D*+π0)<3.6×10-6 at the 90% confidence level. This limit can be used to constrain the ratio between suppressed and favored B→D*π decay amplitudes, r<0.051, at the 90% confidence level. © 2008 The American Physical Society.

Journal ArticleDOI
Yu-xi Liu1, K. Trabelsi, I. Adachi, H. Aihara2, K. Arinstein3, V. M. Aulchenko3, T. Aushev4, Tariq Aziz5, A. M. Bakich6, A. Bay4, I. Bedny3, K. Belous, V. Bhardwaj7, U. Bitenc, A. Bondar3, A. Bozek8, M. Bračko9, T. E. Browder, P. Chang10, Y. Chao10, A. Chen11, K. F. Chen10, B. G. Cheon12, I. S. Cho13, Y. Choi14, J. Dalseno, M. Dash15, S. Eidelman3, N. Gabyshev3, B. Golob16, H. Ha17, J. Haba, T. Hara18, K. Hayasaka19, H. Hayashii20, Masashi Hazumi, D. Heffernan18, Y. Hoshi21, W. S. Hou10, H. J. Hyun22, K. Inami19, Hirokazu Ishino23, R. Itoh, M. Iwabuchi1, Motoki Iwasaki2, Y. Iwasaki, D. H. Kah22, S. U. Kataoka20, N. Katayama, T. Kawasaki24, H. Kichimi, H. J. Kim22, H. O. Kim22, S. K. Kim25, Y. I. Kim22, Y. J. Kim1, K. Kinoshita26, S. Korpar9, P. Križan16, P. Krokovny, Rakesh Kumar7, Y. J. Kwon13, S. H. Kyeong13, J. S. Lange27, Joowon Lee14, M. J. Lee25, J. Li, Antonio Limosani28, C. Liu29, D. Liventsev, A. Matyja8, S. McOnie6, Tatiana Medvedeva, K. Miyabayashi20, H. Miyake18, H. Miyata24, Y. Miyazaki19, T. Nagamine30, Yasushi Nagasaka31, M. Nakao, H. Nakazawa11, S. Nishida, O. Nitoh32, T. Nozaki, S. Ogawa33, T. Ohshima19, S. Okuno34, H. Ozaki, P. Pakhlov, G. Pakhlova, C. W. Park14, H. Park22, H. K. Park22, L. S. Peak6, R. Pestotnik, L. E. Piilonen15, H. Sahoo, Y. Sakai, O. Schneider4, J. Schümann, C. Schwanda35, A. J. Schwartz26, A. Sekiya20, K. Senyo19, M. E. Sevior28, M. Shapkin, C. P. Shen, J. G. Shiu10, J. B. Singh7, Samo Stanič36, M. Starič, T. Sumiyoshi37, F. Takasaki, M. Tanaka, G. N. Taylor28, Y. Teramoto38, I. Tikhomirov, T. Tsuboyama, S. Uehara, T. Uglov, Y. Unno12, S. Uno, Phillip Urquijo28, G. S. Varner, K. Vervink4, C. H. Wang39, P. Wang, X. L. Wang, Y. Watanabe34, Robin Wedd28, E. Won17, H. Yamamoto30, Y. Yamashita, C. C. Zhang, Z. P. Zhang29, V.N. Zhilich3, Vladimir Zhulanov3, T. Zivko, A. Zupanc, O. Zyukova3 
TL;DR: In this paper, a search for the decay B0→J/ψ, using a sample of 657×106 BB pairs collected with the Belle detector at the Υ(4S) resonance was performed.
Abstract: We report a search for the decay B0→J/ψ, using a sample of 657×106 BB pairs collected with the Belle detector at the Υ(4S) resonance. No statistically significant signal is found and an upper limit for the branching fraction is determined to be B(B0→J/ψ)<9.4×10-7 at 90% confidence level. © 2008 The American Physical Society.

Posted Content
TL;DR: In this paper, Cavity quantum electrodynamic (QED) is studied for two strongly coupled charge qubits interacting with a single-mode quantized field, which is provided by a on-chip transmission line resonator.
Abstract: Cavity quantum electrodynamic (QED) is studied for two strongly-coupled charge qubits interacting with a single-mode quantized field, which is provided by a on-chip transmission line resonator. We analyze the dressed state structure of this superconducting circuit QED system and the selection rules of electromagnetic-induced transitions between any two of these dressed states. Its macroscopic quantum criticality, in the form of ground state level crossing, is also analyzed, resulting from competition between the Ising-type inter-qubit coupling and the controllable on-site potentials.