scispace - formally typeset
Search or ask a question

Showing papers presented at "Symposium on Computational Geometry in 2021"


Proceedings ArticleDOI
07 Jun 2021
TL;DR: In this paper, a (4/3+e)-approximation algorithm for the 2Dimensional Knapsack problem is presented, assuming that all input data are integers polynomially bounded in n.
Abstract: In the 2-Dimensional Knapsack problem (2DK) we are given a square knapsack and a collection of n rectangular items with integer sizes and profits. Our goal is to find the most profitable subset of items that can be packed non-overlappingly into the knapsack. The currently best known polynomial-time approximation factor for 2DK is 17/9+e < 1.89 and there is a (3/2+e)-approximation algorithm if we are allowed to rotate items by 90 degrees [Galvez et al., FOCS 2017]. In this paper, we give (4/3+e)-approximation algorithms in polynomial time for both cases, assuming that all input data are integers polynomially bounded in n. Galvez et al.’s algorithm for 2DK partitions the knapsack into a constant number of rectangular regions plus one L-shaped region and packs items into those in a structured way. We generalize this approach by allowing up to a constant number of more general regions that can have the shape of an L, a U, a Z, a spiral, and more, and therefore obtain an improved approximation ratio. In particular, we present an algorithm that computes the essentially optimal structured packing into these regions.

10 citations


Proceedings ArticleDOI
07 Jun 2021
TL;DR: This work presents a versatile algorithmic framework for exhaustively generating a large variety of different classes of generic rectangulation classes, and begins a systematic investigation of pattern avoidance in rectangulations.
Abstract: A generic rectangulation is a partition of a rectangle into finitely many interior-disjoint rectangles, such that no four rectangles meet in a point. In this work we present a versatile algorithmic framework for exhaustively generating a large variety of different classes of generic rectangulations. Our algorithms work under very mild assumptions, and apply to a large number of rectangulation classes known from the literature, such as generic rectangulations, diagonal rectangulations, 1-sided/area-universal, block-aligned rectangulations, and their guillotine variants. They also apply to classes of rectangulations that are characterized by avoiding certain patterns, and in this work we initiate a systematic investigation of pattern avoidance in rectangulations. Our generation algorithms are efficient, in some cases even loopless or constant amortized time, i.e., each new rectangulation is generated in constant time in the worst case or on average, respectively. Moreover, the Gray codes we obtain are cyclic, and sometimes provably optimal, in the sense that they correspond to a Hamilton cycle on the skeleton of an underlying polytope. These results are obtained by encoding rectangulations as permutations, and by applying our recently developed permutation language framework.

8 citations


Proceedings ArticleDOI
07 Jun 2021
TL;DR: In this article, a structural lemma was proposed for the geometric knapsack problem with guillotine cut constraints, and a polynomial time (1+e)-approximation algorithm for the case with and without allowing rotations by 90 degrees was presented.
Abstract: In two-dimensional geometric knapsack problem, we are given a set of n axis-aligned rectangular items and an axis-aligned square-shaped knapsack. Each item has integral width, integral height and an associated integral profit. The goal is to find a (non-overlapping axis-aligned) packing of a maximum profit subset of rectangles into the knapsack. A well-studied and frequently used constraint in practice is to allow only packings that are guillotine separable, i.e., every rectangle in the packing can be obtained by recursively applying a sequence of edge-to-edge axis-parallel cuts that do not intersect any item of the solution. In this paper we study approximation algorithms for the geometric knapsack problem under guillotine cut constraints. We present polynomial time (1+e)-approximation algorithms for the cases with and without allowing rotations by 90 degrees, assuming that all input numeric data are polynomially bounded in n. In comparison, the best-known approximation factor for this setting is 3+e [Jansen-Zhang, SODA 2004], even in the cardinality case where all items have the same profit. Our main technical contribution is a structural lemma which shows that any guillotine packing can be converted into another structured guillotine packing with almost the same profit. In this packing, each item is completely contained in one of a constant number of boxes and 𝖫-shaped regions, inside which the items are placed by a simple greedy routine. In particular, we provide a clean sufficient condition when such a packing obeys the guillotine cut constraints which might be useful for other settings where these constraints are imposed.

8 citations


Proceedings ArticleDOI
07 Jun 2021
TL;DR: In this paper, the authors show that for every finite set of points in the plane and every e > 0, there exists a Euclidean Steiner (1+e)-spanner of lightness O(e^{-1}logΔ) which matches the lower bound for d = 2.
Abstract: Lightness is a fundamental parameter for Euclidean spanners; it is the ratio of the spanner weight to the weight of the minimum spanning tree of a finite set of points in ℝ^d. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on e > 0 and d ∈ ℕ of the minimum lightness of a (1+e)-spanner, and observed that additional Steiner points can substantially improve the lightness. Le and Solomon (2020) constructed Steiner (1+e)-spanners of lightness O(e^{-1}logΔ) in the plane, where Δ ≥ Ω(√n) is the spread of the point set, defined as the ratio between the maximum and minimum distance between a pair of points. They also constructed spanners of lightness O(e^{-(d+1)/2}) in dimensions d ≥ 3. Recently, Bhore and Toth (2020) established a lower bound of Ω(e^{-d/2}) for the lightness of Steiner (1+e)-spanners in ℝ^d, for d ≥ 2. The central open problem in this area is to close the gap between the lower and upper bounds in all dimensions d ≥ 2. In this work, we show that for every finite set of points in the plane and every e > 0, there exists a Euclidean Steiner (1+e)-spanner of lightness O(e^{-1}); this matches the lower bound for d = 2. We generalize the notion of shallow light trees, which may be of independent interest, and use directional spanners and a modified window partitioning scheme to achieve a tight weight analysis.

5 citations


Proceedings ArticleDOI
07 Jun 2021
TL;DR: In this article, the authors present new constructions of reliable spanners for planar graphs, trees and (general) metric spaces, which can withstand large, catastrophic failures in the network.
Abstract: A spanner is reliable if it can withstand large, catastrophic failures in the network. More precisely, any failure of some nodes can only cause a small damage in the remaining graph in terms of the dilation, that is, the spanner property is maintained for almost all nodes in the residual graph. Constructions of reliable spanners of near linear size are known in the low-dimensional Euclidean settings. Here, we present new constructions of reliable spanners for planar graphs, trees and (general) metric spaces.

3 citations


Proceedings ArticleDOI
07 Jun 2021
TL;DR: In this article, the Hausdorff distance under translation (HDS under translation) was introduced, which minimizes the HHS distance over all translations of one of the point sets.
Abstract: Computing the similarity of two point sets is a ubiquitous task in medical imaging, geometric shape comparison, trajectory analysis, and many more settings. Arguably the most basic distance measure for this task is the Hausdorff distance, which assigns to each point from one set the closest point in the other set and then evaluates the maximum distance of any assigned pair. A drawback is that this distance measure is not translational invariant, that is, comparing two objects just according to their shape while disregarding their position in space is impossible. Fortunately, there is a canonical translational invariant version, the Hausdorff distance under translation, which minimizes the Hausdorff distance over all translations of one of the point sets. For point sets of size n and m, the Hausdorff distance under translation can be computed in time 𝒪(nm) for the L₁ and L_∞ norm [Chew, Kedem SWAT'92] and 𝒪(nm (n+m)) for the L₂ norm [Huttenlocher, Kedem, Sharir DCG'93]. As these bounds have not been improved for over 25 years, in this paper we approach the Hausdorff distance under translation from the perspective of fine-grained complexity theory. We show (i) a matching lower bound of (nm)^{1-o(1)} for L₁ and L_∞ assuming the Orthogonal Vectors Hypothesis and (ii) a matching lower bound of n^{2-o(1)} for L₂ in the imbalanced case of m = 𝒪(1) assuming the 3SUM Hypothesis.

3 citations


Proceedings ArticleDOI
07 Jun 2021
TL;DR: The first dynamic geometric set cover data structure with sublinear update time was presented in this article, which maintains an O(1)-approximation for set cover for axis-aligned squares in 2D.
Abstract: We study geometric set cover problems in dynamic settings, allowing insertions and deletions of points and objects. We present the first dynamic data structure that can maintain an O(1)-approximation in sublinear update time for set cover for axis-aligned squares in 2D . More precisely, we obtain randomized update time O(n^{2/3+δ}) for an arbitrarily small constant δ > 0. Previously, a dynamic geometric set cover data structure with sublinear update time was known only for unit squares by Agarwal, Chang, Suri, Xiao, and Xue [SoCG 2020]. If only an approximate size of the solution is needed, then we can also obtain sublinear amortized update time for disks in 2D and halfspaces in 3D . As a byproduct, our techniques for dynamic set cover also yield an optimal randomized O(nlog n)-time algorithm for static set cover for 2D disks and 3D halfspaces, improving our earlier O(nlog n(log log n)^{O(1)}) result [SoCG 2020].

2 citations


Proceedings Article
07 Jun 2021
TL;DR: In this paper, the authors give an algorithm that produces a sequence of $n$ persistence diagrams converging in bottleneck distance to the input diagram, the $i$th of which has $ i$ distinct (weighted) points and is a $2$-approximation to the closest persistence diagram with that many distinct points.
Abstract: Given a persistence diagram with $n$ points, we give an algorithm that produces a sequence of $n$ persistence diagrams converging in bottleneck distance to the input diagram, the $i$th of which has $i$ distinct (weighted) points and is a $2$-approximation to the closest persistence diagram with that many distinct points. For each approximation, we precompute the optimal matching between the $i$th and the $(i+1)$st. Perhaps surprisingly, the entire sequence of diagrams as well as the sequence of matchings can be represented in $O(n)$ space. The main approach is to use a variation of the greedy permutation of the persistence diagram to give good Hausdorff approximations and assign weights to these subsets. We give a new algorithm to efficiently compute this permutation, despite the high implicit dimension of points in a persistence diagram due to the effect of the diagonal. The sketches are also structured to permit fast (linear time) approximations to the Hausdorff distance between diagrams -- a lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches can also be used to compute a linear-size neighborhood graph directly, obviating the need for geometric data structures used in state-of-the-art methods for bottleneck computation.

2 citations


Proceedings Article
07 Jun 2021
TL;DR: In this paper, the authors studied the edge crossings of the greedy spanner for points in the Euclidean plane and proved a constant upper bound for the number of intersections with larger edges that only depends on the stretch factor of the spanner.
Abstract: $t$-spanners are used to approximate the pairwise distances between a set of points in a metric space. They have only a few edges compared to the total number of pairs and they provide a $t$-approximation on the distance of any two arbitrary points. There are many ways to construct such graphs and one of the most efficient ones, in terms of weight and the number of edges of the resulting graph, is the greedy spanner. In this paper, we study the edge crossings of the greedy spanner for points in the Euclidean plane. We prove a constant upper bound for the number of intersections with larger edges that only depends on the stretch factor of the spanner, $t$, and we show there can be more than a bounded number of intersections with smaller edges. Our results imply that greedy spanners for points in the plane have separators of size $\mathcal{O}(\sqrt n)$, that their planarizations have linear size, and that a separator hierarchy for these graphs can be constructed from their planarizations in linear time.

2 citations


Proceedings ArticleDOI
07 Jun 2021
TL;DR: In this article, the homology of the multicover bifiltration was studied and two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, were introduced, which are both topologically equivalent to the polyhedral construction and far smaller than a Cech-based model considered in prior work.
Abstract: Given a finite set A ⊂ ℝ^d, let Cov_{r,k} denote the set of all points within distance r to at least k points of A. Allowing r and k to vary, we obtain a 2-parameter family of spaces that grow larger when r increases or k decreases, called the multicover bifiltration. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Cech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors as well. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness.

2 citations


Proceedings Article
07 Jun 2021
TL;DR: In this article, an algorithm for computing circuit polynomials in the algebraic rigidity matroid associated to the Cayley-Menger ideal for $n$ points in 2D is presented.
Abstract: Motivated by a rigidity-theoretic perspective on the Localization Problem in 2D, we develop an algorithm for computing circuit polynomials in the algebraic rigidity matroid associated to the Cayley-Menger ideal for $n$ points in 2D. We introduce combinatorial resultants, a new operation on graphs that captures properties of the Sylvester resultant of two polynomials in the algebraic rigidity matroid. We show that every rigidity circuit has a construction tree from $K_4$ graphs based on this operation. Our algorithm performs an algebraic elimination guided by the construction tree, and uses classical resultants, factorization and ideal membership. To demonstrate its effectiveness, we implemented our algorithm in Mathematica: it took less than 15 seconds on an example where a Groebner Basis calculation took 5 days and 6 hrs.

Proceedings ArticleDOI
07 Jun 2021
TL;DR: In this paper, the authors model a crystal as a periodic point set and present a fingerprint consisting of density functions that facilitates the efficient search for new materials and material properties, and prove invariance under isometries, continuity and completeness in the generic case.
Abstract: Modeling a crystal as a periodic point set, we present a fingerprint consisting of density functions that facilitates the efficient search for new materials and material properties. We prove invariance under isometries, continuity, and completeness in the generic case, which are necessary features for the reliable comparison of crystals. The proof of continuity integrates methods from discrete geometry and lattice theory, while the proof of generic completeness combines techniques from geometry with analysis. The fingerprint has a fast algorithm based on Brillouin zones and related inclusion-exclusion formulae. We have implemented the algorithm and describe its application to crystal structure prediction.

Proceedings ArticleDOI
01 Jan 2021
TL;DR: In this article, the authors propose a parallel batch-dynamic data structure for the closest pair problem, based on a serial dynamic closest pair data structure by Golin et al., and support batches of insertions and deletions in parallel.
Abstract: We propose a theoretically-efficient and practical parallel batch-dynamic data structure for the closest pair problem. Our solution is based on a serial dynamic closest pair data structure by Golin et al., and supports batches of insertions and deletions in parallel. For a data set of size n, our data structure supports a batch of insertions or deletions of size m in O(m(1+log ((n+m)/m))) expected work and O(log (n+m)log^*(n+m)) depth with high probability, and takes linear space. The key techniques for achieving these bounds are a new work-efficient parallel batch-dynamic binary heap, and careful management of the computation across sets of points to minimize work and depth. We provide an optimized multicore implementation of our data structure using dynamic hash tables, parallel heaps, and dynamic k-d trees. Our experiments on a variety of synthetic and real-world data sets show that it achieves a parallel speedup of up to 38.57x (15.10x on average) on 48 cores with hyper-threading. In addition, we also implement and compare four parallel algorithms for static closest pair problem, for which we are not aware of any existing practical implementations. On 48 cores with hyper-threading, the static algorithms achieve up to 51.45x (29.42x on average) speedup, and Rabin’s algorithm performs the best on average. Comparing our dynamic algorithm to the fastest static algorithm, we find that it is advantageous to use the dynamic algorithm for batch sizes of up to 20% of the data set. As far as we know, our work is the first to experimentally evaluate parallel closest pair algorithms, in both the static and the dynamic settings.

Proceedings Article
07 Jun 2021
TL;DR: The colorful fractional Helly theorem was first proved by Kim as discussed by the authors, who showed that for any non-negative integer d, there is a subfamily of size at least β(d, n) with a non-empty intersection.
Abstract: The well known fractional Helly theorem and colorful Helly theorem can be merged into the so called colorful fractional Helly theorem. It states: For every $\alpha \in (0, 1]$ and every non-negative integer $d$, there is $\beta_{col} = \beta_{col}(\alpha, d) \in (0, 1]$ with the following property. Let $\mathcal{F}_1, \dots, \mathcal{F}_{d+1}$ be finite nonempty families of convex sets in $\mathbb{R}^d$ of sizes $n_1, \dots, n_{d+1}$ respectively. If at least $\alpha n_1 n_2 \cdots n_{d+1}$ of the colorful $(d+1)$-tuples have a nonempty intersection, then there is $i \in [d+1]$ such that $\mathcal{F}_i$ contains a subfamily of size at least $\beta_{col} n_i$ with a nonempty intersection. (A colorful $(d+1)$-tuple is a $(d+1)$-tuple $(F_1, \dots , F_{d+1})$ such that $F_i$ belongs to $\mathcal{F}_i$ for every $i$.) The colorful fractional Helly theorem was first stated and proved by Barany, Fodor, Montejano, Oliveros, and Por in 2014 with $\beta_{col} = \alpha/(d+1)$. In 2017 Kim proved the theorem with better function $\beta_{col}$, which in particular tends to $1$ when $\alpha$ tends to $1$. Kim also conjectured what is the optimal bound for $\beta_{col}(\alpha, d)$ and provided the upper bound example for the optimal bound. The conjectured bound coincides with the optimal bounds for the (non-colorful) fractional Helly theorem proved independently by Eckhoff and Kalai around 1984. We verify Kim's conjecture by extending Kalai's approach to the colorful scenario. Moreover, we obtain optimal bounds also in more general setting when we allow several sets of the same color.

Proceedings ArticleDOI
07 Jun 2021
TL;DR: Oh and Ahn as mentioned in this paper presented a deterministic algorithm of O(n+log log n+m log m) time, which is the fastest known lower bound for the problem.
Abstract: Given a set S of m point sites in a simple polygon P of n vertices, we consider the problem of computing the geodesic farthest-point Voronoi diagram for S in P. It is known that the problem has an Ω(n+mlog m) time lower bound. Previously, a randomized algorithm was proposed [Barba, SoCG 2019] that can solve the problem in O(n+mlog m) expected time. The previous best deterministic algorithms solve the problem in O(nlog log n+ mlog m) time [Oh, Barba, and Ahn, SoCG 2016] or in O(n+mlog m+mlog² n) time [Oh and Ahn, SoCG 2017]. In this paper, we present a deterministic algorithm of O(n+mlog m) time, which is optimal. This answers an open question posed by Mitchell in the Handbook of Computational Geometry two decades ago.


Proceedings ArticleDOI
07 Jun 2021
TL;DR: In this article, the authors study the problem of finding a drawing of a graph G and a cycle C in a simple polygon P that respects P. They show that there exists a planar drawing of G with C on the outer face of G that can be found inside P.
Abstract: We study a fundamental question from graph drawing: given a pair (G,C) of a graph G and a cycle C in G together with a simple polygon P, is there a straight-line drawing of G inside P which maps C to P? We say that such a drawing of (G,C) respects P. We fully characterize those instances (G,C) which are polygon-universal, that is, they have a drawing that respects P for any simple (not necessarily convex) polygon P. Specifically, we identify two necessary conditions for an instance to be polygon-universal. Both conditions are based purely on graph and cycle distances and are easy to check. We show that these two conditions are also sufficient. Furthermore, if an instance (G,C) is planar, that is, if there exists a planar drawing of G with C on the outer face, we show that the same conditions guarantee for every simple polygon P the existence of a planar drawing of (G,C) that respects P. If (G,C) is polygon-universal, then our proofs directly imply a linear-time algorithm to construct a drawing that respects a given polygon P.

Proceedings ArticleDOI
07 Jun 2021
TL;DR: In this article, it was shown that if two convex bodies A and B are equivalent if there exists a linear transformation B' of B such that for any slope, the longest line segments with that slope contained in B and A, respectively, are equally long, then G is a contact graph of A.
Abstract: Let A be a convex body in the plane and A₁,…,A_n be translates of A. Such translates give rise to an intersection graph of A, G = (V,E), with vertices V = {1,… ,n} and edges E = {uv∣ A_u ∩ A_v ≠ ∅}. The subgraph G' = (V, E') satisfying that E' ⊂ E is the set of edges uv for which the interiors of A_u and A_v are disjoint is a unit distance graph of A. If furthermore G' = G, i.e., if the interiors of A_u and A_v are disjoint whenever u≠ v, then G is a contact graph of A. In this paper, we study which pairs of convex bodies have the same contact, unit distance, or intersection graphs. We say that two convex bodies A and B are equivalent if there exists a linear transformation B' of B such that for any slope, the longest line segments with that slope contained in A and B', respectively, are equally long. For a broad class of convex bodies, including all strictly convex bodies and linear transformations of regular polygons, we show that the contact graphs of A and B are the same if and only if A and B are equivalent. We prove the same statement for unit distance and intersection graphs.

Proceedings ArticleDOI
07 Jun 2021
TL;DR: In this article, Andoni et al. showed that an efficient NNS data structure for a metric is implied by an efficient average distortion embedding of the metric into the Euclidean space.
Abstract: A recent series of papers by Andoni, Naor, Nikolov, Razenshteyn, and Waingarten (STOC 2018, FOCS 2018) has given approximate near neighbour search (NNS) data structures for a wide class of distance metrics, including all norms. In particular, these data structures achieve approximation on the order of p for 𝓁_p^d norms with space complexity nearly linear in the dataset size n and polynomial in the dimension d, and query time sub-linear in n and polynomial in d. The main shortcoming is the exponential in d pre-processing time required for their construction. In this paper, we describe a more direct framework for constructing NNS data structures for general norms. More specifically, we show via an algorithmic reduction that an efficient NNS data structure for a metric ℳ is implied by an efficient average distortion embedding of ℳ into 𝓁₁ or the Euclidean space. In particular, the resulting data structures require only polynomial pre-processing time, as long as the embedding can be computed in polynomial time. As a concrete instantiation of this framework, we give an NNS data structure for 𝓁_p with efficient pre-processing that matches the approximation factor, space and query complexity of the aforementioned data structure of Andoni et al. On the way, we resolve a question of Naor (Analysis and Geometry in Metric Spaces, 2014) and provide an explicit, efficiently computable embedding of 𝓁_p, for p ≥ 1, into 𝓁₁ with average distortion on the order of p. Furthermore, we also give data structures for Schatten-p spaces with improved space and query complexity, albeit still requiring exponential pre-processing when p ≥ 2. We expect our approach to pave the way for constructing efficient NNS data structures for all norms.

Proceedings ArticleDOI
07 Jun 2021
TL;DR: In this paper, it was shown that for any topological set system ℱ in ℝ^d, if a constant fraction of the k-element subfamilies of a convex set has nonempty intersections, then the rest must also have non-empty intersections.
Abstract: Intersection patterns of convex sets in ℝ^d have the remarkable property that for d+1 ≤ k ≤ 𝓁, in any sufficiently large family of convex sets in ℝ^d, if a constant fraction of the k-element subfamilies have nonempty intersection, then a constant fraction of the 𝓁-element subfamilies must also have nonempty intersection. Here, we prove that a similar phenomenon holds for any topological set system ℱ in ℝ^d. Quantitatively, our bounds depend on how complicated the intersection of 𝓁 elements of ℱ can be, as measured by the maximum of the ⌈d/2⌉ first Betti numbers. As an application, we improve the fractional Helly number of set systems with bounded topological complexity due to the third author, from a Ramsey number down to d+1. We also shed some light on a conjecture of Kalai and Meshulam on intersection patterns of sets with bounded homological VC dimension. A key ingredient in our proof is the use of the stair convexity of Bukh, Matousek and Nivasch to recast a simplicial complex as a homological minor of a cubical complex.

Proceedings ArticleDOI
07 Jun 2021
TL;DR: In this article, the authors introduced the notion of vision-stability and proposed a one-shot algorithm that computes an optimal guard set for vision-stable polygons using polynomial time and solving one integer program.
Abstract: Given a closed simple polygon P, we say two points p,q see each other if the segment seg(p,q) is fully contained in P. The art gallery problem seeks a minimum size set G ⊂ P of guards that sees P completely. The only currently correct algorithm to solve the art gallery problem exactly uses algebraic methods. As the art gallery problem is ∃ ℝ-complete, it seems unlikely to avoid algebraic methods, for any exact algorithm, without additional assumptions. In this paper, we introduce the notion of vision-stability. In order to describe vision-stability consider an enhanced guard that can see "around the corner" by an angle of δ or a diminished guard whose vision is by an angle of δ "blocked" by reflex vertices. A polygon P has vision-stability δ if the optimal number of enhanced guards to guard P is the same as the optimal number of diminished guards to guard P. We will argue that most relevant polygons are vision-stable. We describe a one-shot vision-stable algorithm that computes an optimal guard set for vision-stable polygons using polynomial time and solving one integer program. It guarantees to find the optimal solution for every vision-stable polygon. We implemented an iterative vision-stable algorithm and show its practical performance is slower, but comparable with other state-of-the-art algorithms. The practical implementation can be found at: https://github.com/simonheng/AGPIterative. Our iterative algorithm is inspired and follows closely the one-shot algorithm. It delays several steps and only computes them when deemed necessary. Given a chord c of a polygon, we denote by n(c) the number of vertices visible from c. The chord-visibility width (cw(P)) of a polygon is the maximum n(c) over all possible chords c. The set of vision-stable polygons admit an FPT algorithm when parameterized by the chord-visibility width. Furthermore, the one-shot algorithm runs in FPT time when parameterized by the number of reflex vertices.

Proceedings ArticleDOI
Tamal K. Dey1, Tao Hou1
07 Jun 2021
TL;DR: In this paper, the authors proposed algorithms for zigzag persistence on graphs which run in near-linear time, given a filtration with m additions and deletions on a graph with n vertices and edges.
Abstract: Graphs model real-world circumstances in many applications where they may constantly change to capture the dynamic behavior of the phenomena. Topological persistence which provides a set of birth and death pairs for the topological features is one instrument for analyzing such changing graph data. However, standard persistent homology defined over a growing space cannot always capture such a dynamic process unless shrinking with deletions is also allowed. Hence, zigzag persistence which incorporates both insertions and deletions of simplices is more appropriate in such a setting. Unlike standard persistence which admits nearly linear-time algorithms for graphs, such results for the zigzag version improving the general O(m^ω) time complexity are not known, where ω < 2.37286 is the matrix multiplication exponent. In this paper, we propose algorithms for zigzag persistence on graphs which run in near-linear time. Specifically, given a filtration with m additions and deletions on a graph with n vertices and edges, the algorithm for 0-dimension runs in O(mlog² n+mlog m) time and the algorithm for 1-dimension runs in O(mlog⁴ n) time. The algorithm for 0-dimension draws upon another algorithm designed originally for pairing critical points of Morse functions on 2-manifolds. The algorithm for 1-dimension pairs a negative edge with the earliest positive edge so that a 1-cycle containing both edges resides in all intermediate graphs. Both algorithms achieve the claimed time complexity via dynamic graph data structures proposed by Holm et al. In the end, using Alexander duality, we extend the algorithm for 0-dimension to compute the (p-1)-dimensional zigzag persistence for ℝ^p-embedded complexes in O(mlog² n+mlog m+nlog n) time.

Proceedings Article
07 Jun 2021
TL;DR: The truncated smoothing as mentioned in this paper is an extension of smoothing on Reeb graphs, where the amount of cut near local minima and maxima is controlled by a parameter.
Abstract: In this paper, we introduce an extension of smoothing on Reeb graphs, which we call truncated smoothing; this in turn allows us to define a new family of metrics which generalize the interleaving distance for Reeb graphs. Intuitively, we "chop off" parts near local minima and maxima during the course of smoothing, where the amount cut is controlled by a parameter $\tau$. After formalizing truncation as a functor, we show that when applied after the smoothing functor, this prevents extensive expansion of the range of the function, and yields particularly nice properties (such as maintaining connectivity) when combined with smoothing for $0 \leq \tau \leq 2\varepsilon$, where $\varepsilon$ is the smoothing parameter. Then, for the restriction of $\tau \in [0,\varepsilon]$, we have additional structure which we can take advantage of to construct a categorical flow for any choice of slope $m \in [0,1]$. Using the infrastructure built for a category with a flow, this then gives an interleaving distance for every $m \in [0,1]$, which is a generalization of the original interleaving distance, which is the case $m=0$. While the resulting metrics are not stable, we show that any pair of these for $m,m' \in [0,1)$ are strongly equivalent metrics, which in turn gives stability of each metric up to a multiplicative constant. We conclude by discussing implications of this metric within the broader family of metrics for Reeb graphs.

Proceedings ArticleDOI
07 Jun 2021
TL;DR: It is proved that every curve pseudo-visibility graph with clique number ω has chromatic number at most 3 ·4ω−1.
Abstract: Curve pseudo-visibility graphs generalize polygon and pseudo-polygon visibility graphs and form a hereditary class of graphs. We prove that every curve pseudo-visibility graph with clique number ω has chromatic number at most 3⋅4^{ω-1}. The proof is carried through in the setting of ordered graphs; we identify two conditions satisfied by every curve pseudo-visibility graph (considered as an ordered graph) and prove that they are sufficient for the claimed bound. The proof is algorithmic: both the clique number and a colouring with the claimed number of colours can be computed in polynomial time.

Proceedings ArticleDOI
07 Jun 2021
TL;DR: It is shown, by an explicit construction, that for any n ≥ 2, there is no Krasnoselskii number for the family of compact sets in R2 with respect to visibility through paths of length ≤ n.
Abstract: For a family ℱ of non-empty sets in ℝ^d, the Krasnoselskii number of ℱ is the smallest m such that for any S ∈ ℱ, if every m or fewer points of S are visible from a common point in S, then any finite subset of S is visible from a single point. More than 35 years ago, Peterson asked whether there exists a Krasnoselskii number for general sets in ℝ^d. The best known positive result is Krasnoselskii number 3 for closed sets in the plane, and the best known negative result is that if a Krasnoselskii number for general sets in ℝ^d exists, it cannot be smaller than (d+1)². In this paper we answer Peterson’s question in the negative by showing that there is no Krasnoselskii number for the family of all sets in ℝ². The proof is non-constructive, and uses transfinite induction and the well-ordering theorem. In addition, we consider Krasnoselskii numbers with respect to visibility through polygonal paths of length ≤ n, for which an analogue of Krasnoselskii’s theorem for compact simply connected sets was proved by Magazanik and Perles. We show, by an explicit construction, that for any n ≥ 2, there is no Krasnoselskii number for the family of compact sets in ℝ² with respect to visibility through paths of length ≤ n. (Here the counterexamples are finite unions of line segments.)

Proceedings ArticleDOI
07 Jun 2021
TL;DR: The restricted constrained Delaunay triangulation (restricted CDT) as mentioned in this paper is a generalization of both the restricted DELA and the constrained DELA, which is the dual of a restricted Voronoi diagram defined on a surface that was extended by topological surgery.
Abstract: We introduce the restricted constrained Delaunay triangulation (restricted CDT), a generalization of both the restricted Delaunay triangulation and the constrained Delaunay triangulation. The restricted CDT is a triangulation of a surface whose edges include a set of user-specified constraining segments. We define the restricted CDT to be the dual of a restricted Voronoi diagram defined on a surface that we have extended by topological surgery. We prove several properties of restricted CDTs, including sampling conditions under which the restricted CDT contains every constraining segment and is homeomorphic to the underlying surface.

Proceedings ArticleDOI
07 Jun 2021
TL;DR: Two independent proofs of these bounds are given and it is shown that these bounds lead to the known bound of Agarwal et al. (JACM 2004) and Marcus and Tardos (JCTA 2006) on the number of point-circle incidences in the plane.
Abstract: We show that the maximum number of pairwise non-overlapping k-rich lenses (lenses formed by at least k circles) in an arrangement of n circles in the plane is O(n^{3/2}log(n / k^3) k^{-5/2} + n/k), and the sum of the degrees of the lenses of such a family (where the degree of a lens is the number of circles that form it) is O(n^{3/2}log(n/k^3) k^{-3/2} + n). Two independent proofs of these bounds are given, each interesting in its own right (so we believe). We then show that these bounds lead to the known bound of Agarwal et al. (JACM 2004) and Marcus and Tardos (JCTA 2006) on the number of point-circle incidences in the plane. Extensions to families of more general algebraic curves and some other related problems are also considered.