scispace - formally typeset
Search or ask a question
Institution

Amirkabir University of Technology

EducationTehran, Iran
About: Amirkabir University of Technology is a education organization based out in Tehran, Iran. It is known for research contribution in the topics: Nonlinear system & Finite element method. The organization has 15254 authors who have published 31165 publications receiving 487551 citations. The organization is also known as: Tehran Polytechnic & Tehran Polytechnic University.


Papers
More filters
Journal ArticleDOI
TL;DR: A three dimensional nanofibrous scaffold is introduced for differentiation of human bone marrow derived mesenchymal stem cells (hBMSCs) into hepatocytes in hepatocytes.
Abstract: Background: There is significant interest in using nanofibers in tissue engineering from stem cells. The transdifferentiation of mesenchymal stem cells into the hepatic lineage in a nanofibrous structure has not been reported. In this study, a three dimensional nanofibrous scaffold is introduced for differentiation of human bone marrow derived mesenchymal stem cells (hBMSCs) into hepatocytes. Methods: A scaffold composed of Poly (e-caprolactone), collagen and polyethersulfone was fabricated by the electrospinning technique. After characterization of isolated hBMSCs, the performance of the cells on the scaffold was evaluated by Scanning Electron Microscopy (SEM) and MTT assay. Cytological, molecular and biochemical markers were measured to confirm differentiation potential of hBMSCs into hepatocytes. Results: The isolated cells possessed the basic properties of mesenchymal stem cells (MSCs). Based on scanning electron microscope (SEM) analysis and MTT assay, it was shown that the cells adhere, penetrate and proliferate on the nanofibers. Cultured cells on the nanofibers differentiated into hepatocyte-like cells and expressed hepatocyte specific markers such as albumin, α-fetoprotein, cytokeratin-18, cytokeratin-19 and cytochrome P450 3A4 at mRNA levels. Appearance of a considerable number of albumin-positive cells cultivated on the scaffold (47 ± 4%) as compared to the two-dimensional culture system (28 ± 6%) indicates the supporting role of the scaffold. The efficiency of the cells to produce albumin, urea, transferrin, serum glutamic pyruvic transaminase and serum oxaloacetate aminotransferase in hepatocytes on the scaffold further attest to the functionality of the cells. Conclusion: The data presented in this study show that the engineered nanofibrous scaffold is a conductive matrix which supports and enhances MSC development into functional hepatocyte-like cells.

136 citations

Journal ArticleDOI
TL;DR: A method based on multiple-point statistics in which a single 2D thin section of a porous medium, represented by a digitized image, is used to reconstruct the 3D porous medium to which the thin section belongs is presented.
Abstract: The purpose of any reconstruction method is to generate realizations of two- or multiphase disordered media that honor limited data for them, with the hope that the realizations provide accurate predictions for those properties of the media for which there are no data available, or their measurement is difficult. An important example of such stochastic systems is porous media for which the reconstruction technique must accurately represent their morphology---the connectivity and geometry---as well as their flow and transport properties. Many of the current reconstruction methods are based on low-order statistical descriptors that fail to provide accurate information on the properties of heterogeneous porous media. On the other hand, due to the availability of high resolution two-dimensional (2D) images of thin sections of a porous medium, and at the same time, the high cost, computational difficulties, and even unavailability of complete 3D images, the problem of reconstructing porous media from 2D thin sections remains an outstanding unsolved problem. We present a method based on multiple-point statistics in which a single 2D thin section of a porous medium, represented by a digitized image, is used to reconstruct the 3D porous medium to which the thin section belongs. The method utilizes a 1D raster path for inspecting the digitized image, and combines it with a cross-correlation function, a grid splitting technique for deciding the resolution of the computational grid used in the reconstruction, and the Shannon entropy as a measure of the heterogeneity of the porous sample, in order to reconstruct the 3D medium. It also utilizes an adaptive technique for identifying the locations and optimal number of hard (quantitative) data points that one can use in the reconstruction process. The method is tested on high resolution images for Berea sandstone and a carbonate rock sample, and the results are compared with the data. To make the comparison quantitative, two sets of statistical tests consisting of the autocorrelation function, histogram matching of the local coordination numbers, the pore and throat size distributions, multiple-points connectivity, and single- and two-phase flow permeabilities are used. The comparison indicates that the proposed method reproduces the long-range connectivity of the porous media, with the computed properties being in good agreement with the data for both porous samples. The computational efficiency of the method is also demonstrated.

136 citations

Book ChapterDOI
25 Nov 2008
TL;DR: This paper proposes Fractional-order Hopfield Neural Networks (FHNN), a network mainly based on the classic well-known Hopfield net in which fractance components with fractional order derivatives, replace capacitors.
Abstract: This paper proposes Fractional-order Hopfield Neural Networks (FHNN). This network is mainly based on the classic well-known Hopfield net in which fractance components with fractional order derivatives, replace capacitors. Stability of FHNN is fully investigated through energy-like function analysis. To show how effective the FHNN network is, an illustrative example for parameter estimation problem of the second-order system is finally considered in the paper. The results of simulation are very promising.

136 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that there are two approaches for dealing with long-term production planning problems: (1) deterministic and (2) uncertainty-based approaches.
Abstract: Long-term production planning (LTPP) is a large-scale optimization problem that aims to find the block extraction sequence that produces the maximum possible net present value (NPV) whilst satisfying a variety of physical and economical constraints. The economic feasibility of a mine is highly dependent upon careful LTPP. As the mining industries extract deeper and lower grade ores, LTPP is becoming a key item that can result in ceasing operations or continuing the project. Mathematical programming models are well suited to optimizing LTPP of open pit mines. These mathematical models have been studied extensively in the literature since the 1960s. The result of this study shows that there are two approaches for dealing with LTPP problems: (1) deterministic and (2) uncertainty-based approaches. This paper first discusses the deterministic algorithms and then, after an introduction to uncertainty associated with mining projects, reviews uncertainty-based algorithms. The advantages and disadvantages of these...

135 citations

Journal ArticleDOI
TL;DR: In this paper, the generalized coupled Sylvester matrix equations over generalized bisymmetric matrix pair [X, Y ] were automatically determined by automatically determining the solvability of the generalized coupling Sylvesters matrix equations.

135 citations


Authors

Showing all 15352 results

NameH-indexPapersCitations
Ali Mohammadi106114954596
Mehdi Dehghan8387529225
Morteza Mahmoudi8333426229
Gaurav Sharma82124431482
Vladimir A. Rakov6745914918
Mohammad Reza Ganjali65103925238
Bahram Ramezanzadeh6235212946
Muhammad Sahimi6248117334
Niyaz Mohammad Mahmoodi6121810080
Amir A. Zadpoor6129411653
Mohammad Hossein Ahmadi6047711659
Goodarz Ahmadi6077817735
Maryam Kavousi5925822009
Keith W. Hipel5854314045
Danial Jahed Armaghani552128400
Network Information
Related Institutions (5)
Sharif University of Technology
31.3K papers, 526.8K citations

97% related

University of Tehran
65.3K papers, 958.5K citations

93% related

Tarbiat Modares University
32.6K papers, 526.3K citations

92% related

Islamic Azad University
113.4K papers, 1.2M citations

92% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202346
2022216
20212,493
20202,359
20192,368
20182,266